Trig 4.2

Solve quadratic equations (factor, CTS, QF)*
Use the discriminant to describe roots

*Algebra 2 Ch. 6

completing the square

quadratic formula

discriminant (nature of the roots)

conjugates

Quadratic formula song

Quadratic Formula

The roots of a quadratic equation of the form $ax^2 + bx + c = 0$ with $a \neq 0$ are given by the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

WB 4.2

Discriminant b²-4ac

Discriminant	Nature of Roots/Zeros	Graph
<i>b</i> ² − 4 <i>ac</i> > 0	two distinct real roots/zeros	y
$b^2 - 4ac = 0$	exactly one real root/zero (The one real root is actually a double root.)	y + x
b ² - 4ac < 0	no real roots/zero (two distinct imaginary roots/zeros)	O X

Solve (whiteboards)

31.
$$4r^2 - r = 5$$

32.
$$p^2 + 2p + 8 = 0$$

31.
$$4r^2 - r = 5$$
 32. $p^2 + 2p + 8 = 0$ **33.** $x^2 - 2x\sqrt{6} - 2 = 0$

Find the discriminant of each equation and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

7.
$$m^2 + 12m + 36 = 0$$
 8. $t^2 - 6t + 13 = 0$

8.
$$t^2 - 6t + 13 = 0$$

Find the discriminant of each equation and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

20.
$$6m^2 + 7m - 3 = 0$$
 21. $s^2 - 5s + 9 = 0$

21.
$$s^2 - 5s + 9 = 0$$

22.
$$36d^2 - 84d + 49 = 0$$
 23. $4x^2 - 2x + 9 = 0$

23.
$$4x^2 - 2x + 9 = 0$$