
Trig 4.1

Determine roots of polynomial equations *
Apply the fundamental theorem of algebra (# of roots) *

State the degree and leading coefficient of each polynomial.

5.
$$a^3 + 6a + 14$$

6.
$$5m^2 + 8m^5 - 2$$

Determine whether each number is a root of $x^3 - 5x^2 - 3x - 18 = 0$. Explain.

7.5

X=5 no

 $5^{3} - 5.5^{2} - 3.5 - 18 = 0$ 125 - 125 - 15 - 18 = 0 $-33 \neq 0$

Alg 2 4.3

9. -5, 7

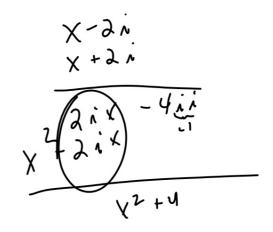
10. 6, 2i, -2i, i, -i

$$\chi^{2}-2\chi-3S=0$$
 $(\chi+5)(\chi-7)=0$
 $\chi+5=0$
 $\chi-7=0$
 $\chi=-5$
 $\chi=-7$

conjugate pair

X=3+51 X=3-51

$$(x-2i)(x+2i) = 0$$


$$(x-3i)(x+2i) = 0$$

$$x+2i = 0$$

$$x=3i$$

$$x=-3i$$

 $\begin{cases} x = 3 & x = -3 \\ x + 3 = 0 & x + 2 = 0 \\ x + 3 = 0 & x + 2 = 0 \end{cases}$

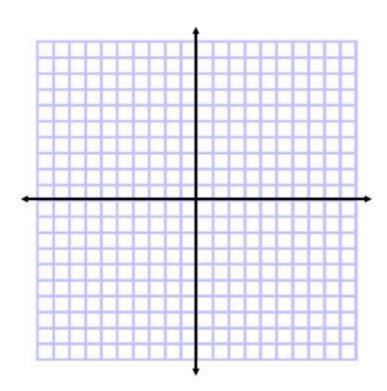
$$x^{5}-6x^{4}+5x^{3}-30x^{2}+4x-2y=0 \qquad x^{2}+4$$

$$(x-6)(x^{2}+4)(x^{2}+1)=0 \qquad x^{4}+5x^{2}+4$$

$$(x-6)(x-3i)(x+3i)(x-i)(x+i)=0 \qquad x^{6}+5x^{3}+4x$$

$$x=6 \quad x=3i \quad x=-3i \quad x=1 \qquad x=-i$$

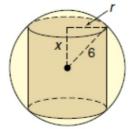
$$X=3$$
 $X=2-i$ $X=2+i$ $X=3-i$


$$(x-3)$$
 $(x-3)$ $(x-2+i)=0$

State the number of complex roots of each equation. Then find the roots and graph the related functions.

11.
$$x^2 - 14x + 49 = 0$$

11.
$$x^2 - 14x + 49 = 0$$
 12. $a^3 + 2a^2 - 8a = 0$ **13.** $t^4 - 1 = 0$


13.
$$t^4 - 1 = 0$$

Use everything that you know: # of roots factoring crossing points end behavior

Show a (small) table of values

- **14. Geometry** A cylinder is inscribed in a sphere with a radius of 6 units as shown.
 - a. Write a function that models the volume of the cylinder in terms of x. (*Hint:* The volume of a cylinder equals $\pi r^2 h$.)
 - b. Write this function as a polynomial function.
 - **c.** Find the volume of the cylinder if x = 4.

It's messy, don't be scared. Exact answer (in terms of π)