Trig 3.1

Use algebraic tests to determine symmetry
Classify functions as even or odd

symmetry

point symmetry (origin)

line symmetry (x-axis, y-axis, y=x y=-x)

even function

odd function

activity: whiteboards (if time)

$$y_{0} \times (a_{1}-b) \qquad y_{2}+3x=0 \implies y_{2}=\sqrt{-3}x$$

$$y_{0} \times (a_{1}-b) \qquad y_{2}+3a=0 \qquad y_{3}-4\sqrt{-3}x$$

$$y_{0}+3a=0 \qquad y_{3}-4\sqrt{-3}x$$

35.
$$X = \frac{1}{2} \sqrt{12 - 8y^2}$$
 $a = \frac{1}{2} \sqrt{12 - 8b^2}$
Ups $X - axis$ $(a, -b)$ $a = \frac{1}{2} \sqrt{12 - 8b^2}$
Ups $Y - axis$ $(-a, b)$ $a = \frac{1}{2} \sqrt{12 - 8y^2}$
 $x^2 - 12 = -6y^2$ $x^2 - 12 = -6y^2$

Compare (a,b) and (-a,-b)

Symmetry with Respect to the Origin

The graph of a relation S is symmetric with respect to the origin if and only if $(a, b) \in S$ implies that $(-a, -b) \in S$. A function has a graph that is symmetric with respect to the origin if and only if f(-x) = -f(x) for all x in the domain of f.

Also "odd function"

Substitute & compare to the parent graph. Are they the same?

Symmetry with Respect to the:	Definition and Test	Example (a,b) compare with
x-axis		$y = x = y^2 - 4$ $(2, \sqrt{6})$ $y = 0$ $(2, -\sqrt{6})$
y-axis		(-2, 8) $(-2, 8)$ $(-2, 8)$ $(-2, 8)$

also "even"

Symmetry with Respect to the Line:	Definition and Test	Example
<i>y</i> = <i>x</i>		y = x $(2, 3)$ $xy = 6$ x
y = -x	-q	$ \begin{array}{c} y_1 \\ 17x^2 + 16xy + 17y^2 = 225 \\ \hline 0 $

(same as odd)

Determine whether the graph of each function is symmetric with respect to the origin.

6.
$$f(x) = x^6 + 9x$$

7.
$$f(x) = \frac{1}{5x} - x^{19}$$

Determine whether the graph of each equation is symmetric with respect to the x-axis, y-axis, the line y = x, the line y = -x, or none of these.

8.
$$6x^2 = y - 1$$

9.
$$x^3 + y^3 = 4$$

Whiteboards:
Symmetric x-axis
Symmetric y-axis
Symmetric y=x
Symmetric y=-x
Even/odd/neither

