Geometry 2.6
Use algebra to write 2-column proofs
Use properties of equality to write geometric proofs

algebraic proof
paragraph proof (sentence form...less formal)
2-column proof (formal proof) Girch:
Prove

Given (hypothesis)
Prove (conclusion)
Picture (if any)
Reasoning from G to P

activity: scrambled proofs

P. 136

KeyConcept Properties of Real Numbers		
The following properties are true for any real numbers a , b , and c .		
Addition Property of Equality	If $a = b$, then $a + c = b + c$.	
Subtraction Property of Equality	If $a = b$, then $a - c = b - c$.	
Multiplication Property of Equality	If $a = b$, then $a \cdot c = b \cdot c$.	
Division Property of Equality	If $a = b$ and $c \neq 0$, then, $\frac{a}{c} = \frac{b}{c}$.	
Reflexive Property of Equality	a = a	
Symmetric Property of Equality	If $a = b$, then $b = a$.	
Transitive Property of Equality	If $a = b$ and $b = c$, then $a = c$.	
Substitution Property of Equality	If $a = b$, then a may be replaced by b in any equation or expression.	
Distributive Property	a(b+c) = ab + ac	

scrambled proofs

An algebraic proof is a proof that is made up of a series of algebraic statements.

The properties of equality provide justification for many statements in algebraic proofs.

Real-World Example 2 Write an Algebraic Proof

convert a Fahrenheit temperature SCIENCE If the formula to to a Celsius temperature is $C = \frac{5}{9}(F - 32)$, then the formula C + 32. Write a two-column proof to verify this conjecture

Begin by stating what is given and what you are to prove.

Given:
$$C = \frac{5}{9}(F - 32)$$

Prove:
$$F = \frac{9}{5}C + 32$$

Where do I start? Where am I trying to go?

Proof:

1.
$$C = \frac{5}{9}(F - 32)$$

1. Given

2.

3.

4.

5.

6.

Gren:
$$C = \frac{5}{9}(F-32)$$

Prove: $F = \frac{9}{5}(+32)$

St. Reas.

1. $C = \frac{5}{9}(F-32)$ / given

2. $C = \frac{5}{9}(F-32)$ / distr. prop

 $\frac{-2}{3}(\frac{5}{9}(F-32))$ 3. add.

4. mult

StudyTip

Commutative and Associative Properties

Throughout this text we shall assume that if *a*, *b*, and *c* are real numbers, then the following properties are true.

Commutative Property of Addition

$$a+b=b+a$$

Commutative Property of Multiplication

$$a \cdot b = b \cdot a$$

Associative Property of Addition

$$(a + b) + c = a + (b + c)$$

Associative Property of Multiplication

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Callback to algebra:

Property	Segments	Angles
Reflexive	AB = AB	$m \angle 1 = m \angle 1$
Symmetric	If $AB = CD$, then $CD = AB$.	If $m \angle 1 = m \angle 2$, then $m \angle 2 = m \angle 1$.
Transitive	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$.

Copy and complete

5. Complete the following proof.

Given:
$$\frac{y+2}{3} = 3$$

Prove: y = 7

Proof:

Statements	Reasons
a. ?	a. Given
b. $3\left(\frac{y+2}{3}\right) = 3(3)$	b?
c ?	c?
d. y = 7	d. Subtraction Property

If they give you a conditional statement...

hypothesis: (%) conclusion: (°)

7. If
$$\overline{AB} \cong \overline{CD}$$
, then $x = 7$.

Given: AB & CD

Prove: $\chi = 7$

A YX-C

5. 4<mark>x</mark> = 28

1. given 2. subs. 3. add

Required: copy given, prove, diagram

where to start? where am I going? map?

Logical, convincing, airtight Each statement must have a reason

Example 3 Write a Geometric Proof

If $\angle FGJ \cong \angle JGK$ and $\angle JGK \cong \angle KGH$, then x = 6. Write a two-column proof to verify this conjecture.

Given: $\angle FGJ \cong \angle JGK, \angle JGK \cong \angle KGH,$ $m \angle FGJ = 6x + 7$, $m \angle KGH = 8x - 5$

Proof:

Statements 1. $m \angle FGH = 6x + 7, m \angle KGH = 8x - 5$ $\angle FGJ \cong \angle JGK; \angle JGK \cong \angle KGH$

Reasons

1. Given

2.

3.

4.

5. 6.

7.

8.

9.

10.

11.

State the property that justifies each statement.

13. If
$$5(x + 7) = -3$$
, then $5x + 35 = -3$.

14. If
$$m \angle 1 = 25$$
 and $m \angle 2 = 25$, then $m \angle 1 = m \angle 2$.

15. If
$$AB = BC$$
 and $BC = CD$, then $AB = CD$.

16. If
$$3\left(x - \frac{2}{3}\right) = 4$$
, then $3x - 2 = 4$.

Copy and

ARGUMENTS Complete each proof.

17. Given: $\frac{8-3x}{4} = 32$

Prove: x = -40

Proof:

Statements	Reasons
a. $\frac{8-3x}{4} = 32$	a. Given
b. $4\left(\frac{8-3x}{4}\right) = 4(32)$	b?
c. $8 - 3x = 128$	c?
d?	d. Subtraction Property
e. <i>x</i> = −40	e. <u>?</u>