Geometry 2.5 Identify and use basic postulates about points, lines, planes Write paragraph proofs

postulate (axiom)
theorem
deductive argument
paragraph proof (informal)
2-column proof
working backward (CSI)

Reminder: projects due (APPS geometry) Tuesday EOD reflections due Thurs. in class see Fri. notes for reflection requirements

Postulate: Self-evident
Basic idea/example about a
point, line, plane...
Sort of like a definition...
"...duh"
It just IS. Like gravity.

Points, Lines, and Planes A **postulate** or **axiom** is a statement that is accepted as true without proof. Basic ideas about points, lines, and planes can be stated as postulates.

Postulates Points, Lines, and Planes		
Words	Example	
2.1 Through any two points, there i exactly one line.		is the only line through P and R .
2.2 Through any three noncollinear points, there is exactly one plane.		K is the only plane the noncollinear points and C.
2.3 A line contains at least two points.	$ \begin{array}{cccc} P & Q & R & & \text{Line } n \\ \hline n & & & \text{and } R. \end{array} $	contains points P, Q,
2.4 A plane contains at least three noncollinear points.		K contains noncollinear L, B, C, and E.

KeyConcept Intersections of Lines and Planes		
Words	Example	
2.6 If two lines intersect, then their intersection is exactly one point.	Lines s and t intersect at point P .	
2.7 If two planes intersect, then their intersection is a line.	Planes $\mathcal F$ and $\mathcal G$ intersect in line $\mathcal W$.	

Required elements:

Given: starting point

Prove: where you end up
Drawing (if applicable):

Chain of reasoning (explain) using

statements & reasons

WB 2.5 prac.

Giver: 5x-13=2

To Prow: X=3

Given 5x-13=2

Prove x=3

Start with 5x-13=2 and and 13 to both sides: 5x=15. Divide both sides by 5 so x=3.

Giren Cismpod AB. Prove X=3

If ('is mp then AC = BC So 2x+s = x+8. Zeropair X's SO x + 5 = 8. and - S to both Sides SO x = 3. Giren 21 and 22 form linear pair. Mel=105°

Prove m < 2 = 75°

Since 21 + (2 am L. P. their sum 15 180° So m21 + m22=180°. If m<1=105° the L 105° + m22=180°. Subtract 105 from 60th -105° m22=75°