Geometry 2.3

Analyze statements in if-then form Write the converse, inverse, and contrapositive of conditional statements

if ... then bidonditional, if -> then conditional statement if and only if both direction hypothesis if (muth def) merconclusion then (related conditional (orig) if Halloween then Oct. T converse Oct. then Helloween F inverse contrapositive ~ (-> (inv) in not Hall then not Oct F logically equivalent f not Oct Yaon not Hall T Same T value 0 G + CP

KeyConcept Conditional Statement				
○ C Words	Symbols			
An if-then statement is of the form if p, then q.	$p \rightarrow q$ read if p then q, or p implies q			
The hypothesis of a conditional statement is the phrase immediately following the word <i>if</i> .	р			
The conclusion of a conditional statement is the phrase immediately following the word <i>then</i> .	q			

Related Conditionals There are other statements that are based on a given conditional statement. These are known as related conditionals.

	KeyConcept Related Conditionals				
	Words	Symbols	Examples		
7	A conditional statement is a statement that can be written in the form <i>if p, then q</i> .	$O_{p \to q}$	If $m \angle A$ is 35, then $\angle A$ is an acute angle.		
\ \ !	The converse is formed by exchanging the hypothesis and conclusion of the conditional.	$q \rightarrow p$	If $\angle A$ is an acute angle, then $m\angle A$ is 35.	71	Ē.
	The inverse is formed by negating both the hypothesis and conclusion of the conditional.	~p → ~q	If $m \angle A$ is <i>not</i> 35, then $\angle A$ is <i>not</i> an acute angle.		•
	The contrapositive is formed by negating both the hypothesis and the conclusion of the converse of the conditional.	~q → ~p	If $\angle A$ is <i>not</i> an acute angle, then $m\angle A$ is <i>not</i> 35.		

If you live in Sioux Falls, then you live in SD.

A conditional and its contrapositive are either both true or both false. Similarly, the converse and inverse of a conditional are either both true or both false. Statements with the same truth values are said to be **logically equivalent**.

KeyConcept Logically Equivalent Statements

- · A conditional and its contrapositve are logically equivalent.
- · The converse and inverse of a conditional are logically equivalent.

Write each statement in if-then form.

Example 2

- 5 Sixteen-year-olds are eligible to drive.
 - 6. Cheese contains calcium.
 - 7. The measure of an acute angle is between 0 and 90.
 - 8. Equilateral triangles are equiangular.

S. if 16 then drive

6. if cheese then contains Ca H
7. if acute then between 0+90

if between 0+90 then acuty if Squibas 90"

8. if eguil then equiang. if equiang then equil.

if 90° then sq.

Determine the truth value of each conditional statement. If true, explain your reasoning. Example 3

If *false*, give a counterexample. 10. If $x^2 = 16$, then x = 4.

CF if x=-4

11. If you live in Charlotte, then you live in North Carolina.

12. If tomorrow is Friday, then today is Thursday.

F could be Cheetah **13.** If an animal is spotted, then it is a Dalmatian.

14. If the measure of a right angle is 95, then bees are lizards.

15. If pigs can fly, then 2 + 5 = 7.

Remember: benefit of the doubt...

Whiteboards

ARGUMENTS Write the converse, inverse, and contrapositive of each true conditional Example 4 statement. Determine whether each related conditional is true or false. If a statement is false, find a counterexample.

16. If a number is divisible by 2, then it is divisible by 4. All whole numbers are integers

if whole then int. T

C if int then whole F CE=-12

I if not whole not int. F CE=-12

CP if not int then not whole T

Start by writing in if/then form.

If a triangle is equilateral, then each angle is 60 degrees. If a triangle has three 60 degree angles, then it is equilateral.

164 360° "If and only f. iff"

all 4 rel. cond. T

OC if DE then 60° T C If 60° then DE T C if not DE then 60° T CP if not 60° Then not ego

KeyConcept Biconditional Statement

Words A biconditional statement is the conjunction of a conditional and its converse.

Symbols $(p \rightarrow q) \land (q \rightarrow p) \longleftrightarrow (p \leftrightarrow q)$, read p if and only if q

If and only if can be abbreviated iff.

Examples

Write each biconditional as a conditional and its converse. Then determine whether the biconditional is true or false. If false, give a counterexample.

a. An angle is a right angle if and only if its measure is 90.

Conditional: If an angle measures 90, then the angle is right. Converse: If an angle is right, then the angle measures 90.

Both the conditional and the converse are true, so the biconditional is true.

b. x > -2 iff x is positive.

Conditional: If *x* is positive, then x > -2.

Converse: If x > -2, then x is positive. Let x = -1. Then -1 > -2, but -1 is not positive. So, the biconditional is false.

Write both statement & converse. Are they both true?

Exercises

Write each biconditional as a conditional and its converse. Then determine whether the biconditional is *true* or *false*. If false, give a counterexample.

- 1. Two angles are complements if and only if their measures have a sum of 90.
- 2. There is no school if and only if it is Saturday.

if Sat no school T If no school then Sat F WB23 Pr. 1-7 Sk 1-7