Geometry 2.2

Determine truth values of conjunctions, disjunctions, negations Represent conjunctions, disjunctions, negations using Venn diagrams

Determine counterexamples

statement (proposition) Can be T or F

(proposition) = P

P: Today is Friday negation

truth value

p: A rectangle is a quadrilateral.

compound statement

conjunction (and)

disjunction (or)

truth table

Compound statement:

- p: Today is Wednesday.
- q: September has 37 days.

p: A rectangle is a quadrilateral. ☐q: A rectangle is convex. ☐

$$p$$
 and q : $P \land q$
 $T \land T = T$

"and" means both are true

Symbol: /

2 (or more) props.

Example 1 Truth Values of Conjunctions

Use the following statements to write a compound statement for each conjunction. Then find its truth value. Explain your reasoning.

p: The figure is a triangle.

q: The figure has two congruent sides.

r: The figure has three acute angles.

- p: Today is Tuesday. q: October has 31 days.

$$p \text{ or } q$$
 $P \vee q$
 $F \vee 7 = T$

"Or" means at least one is true...could be both

Symbol:

PT

Example 2 Truth Values of Disjunctions

Use the following statements to write a compound statement for each disconjunction. Then find its truth value. Explain your reasoning.

p: January is a fall month.

q: January has only 30 days.

r: January 1 is the first day of a new year.

b.
$$p \vee q$$

■ GuidedPractice

TVF

Concept Summary	Negation, Conjunction, Disconjunction		
Statement	Words	Symbols	
negation	a statement that has the opposite meaning and truth value of an original statement	~p, read not p	
conjunction \	a compound statement formed by joining two or more statements using the word and	$p \wedge q$, read p and q	
→ disconjunction √	a compound statement formed by joining two or more statements using the word <i>or</i>	$p \lor q$, read p or q	

PTE

Truth Tables are generic:

When you don't have the actual statement(s) yet.

A convenient method for organizing the truth values of statements is to use a **truth table**. Truth tables can be used to determine truth values of negations and compound statements. $P \wedge Q$ $Q \vee Q$

Negation		
р	~p	
Т	F	
F	Т	
F	T	

PN9					
Conjunction					
p	q	p∧q			
T	T	T			
Т	F	F			
F	Т	F			
F	F	F			

U	,				
Disjunction					
р	q	p∨q			
T	T	Т			
T	F	T			
F	T	Т			
F	F	F			

negation

) Start with columns for p, q

Example 3 Construct Truth Tables

Construct a truth table for $\sim p \vee q$.

2) variation

P	q	NP	~p~g	
7	T	÷	FVT	T
T	£	F	た ♪ た	F
F	T	·T	TVT	Т
F	۴	T	TVE	T
	1			1

3) final relationship 4) answer

Add a column for your final answer

GuidedPractice

3. Construct a truth table for $\sim p \land \sim q$.

Venn diagram: Sophomores

Spanish

Venn Diagrams Conjunctions can be illustrated with Venn diagrams. Consider the conjunction given at the beginning of the lesson.

p and q: A rectangle is a quadrilateral, and a rectangle is convex.

The Venn diagram shows that a rectangle (R) is located in the *intersection* of the set of quadrilaterals and the set of convex polygons. In other words, rectangles must be in the set containing quadrilaterals *and* in the set of convex polygons.

Real-World Example 4 Use Venn Diagrams

SCHEDULING The Venn diagram shows the number of people who can or cannot attend the May or the June Spanish Club meetings.

- a. How many people can attend the May or the June meeting?
- b. How many people can attend both the May and the June meetings?
- c. Describe the meetings that the 14 people located in the nonintersecting portion of the June region can attend.

Spanish Club Meeting

GuidedPractice

- PROM The Venn diagram shows the number of graduates last year who did or did not attend their junior or senior prom.
 - A. How many graduates attended their senior but not their junior prom?
 - B. How many graduates attended their junior and senior proms?
 - C. How many graduates did not attend either of their proms?
 - D. How many students graduated last year? Explain your reasoning.

Prom Attendance

