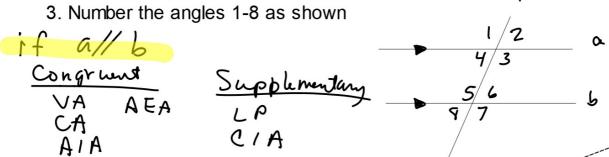
Geometry 3.2
Use theorems to determine the relationships between specific pairs of angles
Use algebra to find angle measurements

transversal interior angles exterior angles corresponding angles parallel perpendicular activity: tracing paper

Each person will need two pieces of tracing paper. (pencil will work best for this activity)

One one of the pieces:

- 1. Trace the two sides of your ruler to form two parallel lines
- 2. Use a straight edge to draw a transversal. (draw the transversal so it is **not** perpendicular)

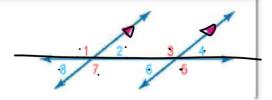


On the other piece of tracing paper:

Postulate 3.1 Corresponding Angles Postulate

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

Examples $\angle 1\cong \angle 3$, $\angle 2\cong \angle 4$, $\angle 5\cong \angle 7$, $\angle 6\cong \angle 8$

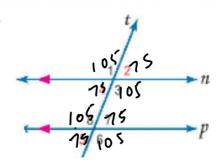


Not using a protractor to measure... Are the lines parallel? Which angle pairs?

Example 1 Use Corresponding Angles Postulate

PT

In the figure $m \angle 5 = 72$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.



GuidedPractice

In the figure, suppose that $m \angle 8 = 105$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

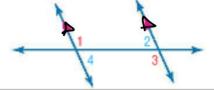
Theorems Parallel Lines and Angle Pairs

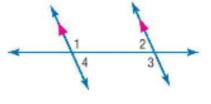
3.1 Alternate Interior Angles Theorem If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.

Examples $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

3.2 Consecutive Interior Angles Theorem If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

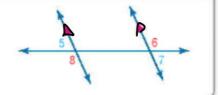
Examples ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary.





3.3 Alternate Exterior Angles Theorem If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.

Examples $\angle 5\cong \angle 7$ and $\angle 6\cong \angle 8$



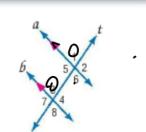
You will prove Theorems 3.2 and 3.3 in Exercises 30 and 35, respectively.

Proof Alternate Interior Angles Theorem

Given: $a \parallel b$

t is a transversal of a and b.

Prove: $\angle 4 \cong \angle 5, \angle 3 \cong \angle 6$



Girn allb Pron <4=25; <3=25

1 a/16

2. <52<7

3. 24227

4. <425

5. - 3= 21 6. 6. 6. 6

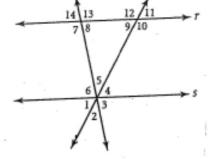
7. <32<6

Angl	е	cł	nas	se:
hand	do	ııt		

P.183 11-29

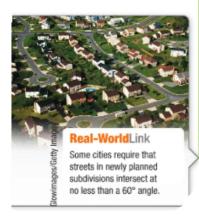
In the figure	at the right, $r \parallel s$, $m \angle 2 = 40^{\circ}$. and m / 4 =	60° Find the	indicated
measures.			oo . i iiid tile	mulcated

- 6. m∠1 _____ 7. m∠3 ____
- 8. m/5 ______ 9. m/6 ____
- 10. m∠7 ______ 11. m∠8 _____
- 12. m∠9 _____ 13. m∠10 ____
- 14. m∠11 _____ 15. m∠12 ____
- 16. m∠13 _____ 17. m∠14 ____



COMMUNITY PLANNING Redding Lane and Creek Road are parallel streets that intersect Park Road along the west side of Wendell Park. If $m \angle 1 = 118$, find $m \angle 2$.





What is the angle relationship???? (decide that first!)

Example 3 Find Values of Variables

ALGEBRA Use the figure at the right to find the indicated variable. Explain your reasoning.

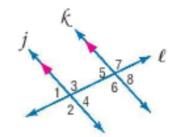
a. If $m \angle 4 = 2x - 17$ and $m \angle 1 = 85$, find x.

 $\begin{array}{c|c}
1 & 2 & & r \\
\hline
8 & 3 & & \\
\hline
7 & 4 & & \\
\hline
6 & 5 & & \\
\end{array}$

b. Find y if $m \angle 3 = 4y + 30$ and $m \angle 7 = 7y + 6$.

3A. If $m \angle 2 = 4x + 7$ and $m \angle 7 = 5x - 13$, find x.

3B. Find y if $m \angle 5 = 68$ and $m \angle 3 = 3y - 2$.



Theorem 3.4 Perpendicular Transversal Theorem

In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Examples If line $a \parallel \text{line } b$ and line $a \perp \text{line } t$, then line $b \perp \text{line } t$.

