Ch! I from a point

*Technical... take good notes! (Assumes a LOT from Alg. 1)

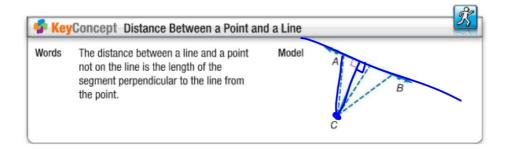
Geometry 3.6

Find the distance between a point and a line*

Find the distance between parallel lines*

pythagorean theorem

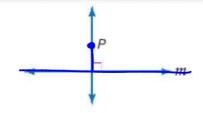
hypotenuse


distance

parallel Same Slope
perpendicular mopp4 recipi

equidistant

construction: perpendicular from a point not on a line P. 55


...because it is the shortest... (why?)

Postulate 3.6 Perpendicular Postulate

Words If given a line and a point not on the line, then there exists exactly one line through the point that is perpendicular to the given line.

Model

GuidedPractice

1. Copy the figure. Then construct and name the segment that represents the distance from Q to \overrightarrow{PR} .

Int.
$$y = -x + 2$$

$$y = -2 + 2$$

$$-x - 2 = -x + 2$$

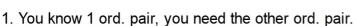
$$+x - 2 + x - 2$$

$$-y = 2x$$

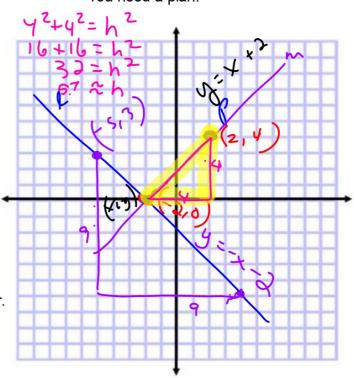
$$-x - 3 = x + 2$$

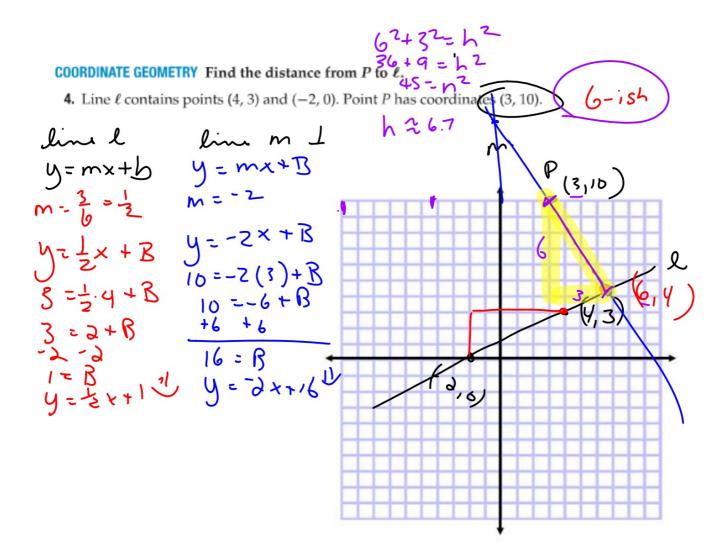
$$-x - 3 = x + 3$$

$$-x - 3 = x - 3$$


$$-x - 3 = x - 3$$

COORDINATE GEOMETRY Line ℓ contains points at (-5, 3) and (4, -6). Find the distance between line ℓ and point P(2, 4).


Always graph and estimate first. \S ish



- 2. Find the equation of line I*
- 3. Find the equation of line p (perp. to I)*
- 4. Find the point of intersection of p and I* (You now know the other ord. pr.)
- 5. Find the distance (Pyth. theor.) with 2 ord. pairs.*

* Covered in Algebra 1 (separately...now all in same problem!) You need a plan!

$$y \in \frac{1}{2} \times +1$$

$$y = -2 \times +16$$

$$\frac{1}{2} \times +1 = -2 \times +16 = 4$$

$$\frac{1}{2} \times +1 = -2 \times +16 = 4$$

$$\frac{1}{2} \times -16 = -\frac{1}{2} \times -16$$

$$-\frac{1}{2} \times -16 = -2.5 \times$$

$$6 = \times$$

Whiteboards:

- 1. You know 1 ord. pair, you need the other ord. pr. 2. Find the equation of line I^{\star}

- 3. Find the equation of line p (perp. to l)*
 4. Find the point of intersection of p and l* (You now know the other ord. pr.)
- 5. Find the distance (Pyth. theor.) with 2 ord. pairs.*

5. Line ℓ contains points (-6, 1) and (9, -4). Point P has coordinates (4, 1).

3.6 9-19022

Line ℓ contains points (4, 18) and (-2, 9). Point P has coordinates (-9, 5).	

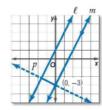
KeyConcept Distance Between Parallel Lines

The distance between two parallel lines is the perpendicular distance between one of the lines and any point on the other line.

Is the y-intercept a point on the line? Can we know what it is from the equation?

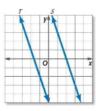
Example 3 Distance Between Parallel Lines

Find the distance between the parallel lines ℓ and m with equations y = 2x + 1 and y = 2x - 3, respectively.

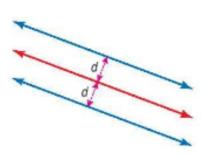

- 1. Pick one line, call it m
- 2. Write the equation of line p perp to m*
- 3. Find the point of intersection of I and p*

(Now you know 2 points)

4. Use pyth theorem to find distance*



* Covered in Algebra 1 (separately...now all in same problem!) You need a plan!


GuidedPractice

3A. Find the distance between the parallel lines r and s whose equations are y = -3x - 5 and y = -3x + 6, respectively.

Theorem3.9 Two Lines Equidistant from a Third

In a plane, if two lines are each equidistant from a third line, then the two lines are parallel to each other.

