Geometry 2.8 Write proofs invo Write proofs invo			• •	ntary angles
complementary supplementary linear pair adjacent angles protractor postula angle addition postulity: whitebook	= 90 = 185 ate ostulate	8 C		+ M2 2 = No LABO

Postulate 2.11 Angle Addition Postulate

D is in the interior of $\angle ABC$ if and only if $m\angle ABD + m\angle DBC = m\angle ABC$.

2.3 Supplement Theorem If two angles form a linear pair, then they are supplementary angles.

Example $m \angle 1 + m \angle 2 = 180$

2.4 Complement Theorem If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles.

Example $m \angle 1 + m \angle 2 = 90$

You will prove Theorems 2.3 and 2.4 in Exercises 16 and 17, respectively.

Theorems

2.6 Congruent Supplements Theorem

Angles supplementary to the same angle or to congruent angles are congruent.

Example If $m \angle 1 + m \angle 2 = 180$ and

 $m\angle 2 + m\angle 3 = 180$, then $\angle 1 \cong \angle 3$.

2.7 Congruent Complements Theorem

Angles complementary to the same angle or to congruent angles are congruent.

Abbreviation \angle compl. to same \angle or \cong \angle are \cong .

Example If $m \angle 4 + m \angle 5 = 90$ and

 $m \angle 5 + m \angle 6 = 90$, then $\angle 4 \cong \angle 6$.

4 5

You will prove one case of Theorem 2.6 in Exercise 6.

ReadingMath

Abbreviations and Symbols

The notation 🛦 means angles.

Theorem 2.8 Vertical Angles Theorem

If two angles are vertical angles, then they are congruent.

Abbreviation Vert. \triangle are \cong .

Example $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

You will prove Theorem 2.8 in Exercise 28.

Giren <1423 an VA Prove <12 <3

- 2. m < 1+ m < 2 = 180
 3. m < 1+ m < 3 = 180
 3. m < 1+ m < 3 = 180
 4. m < 1 = m < 2
 4. m < 1 = m < 2
 5. < 1 = < 3
 5. < 1 = < 3
 5. def =

6. PROOF Copy and complete the proof of one case of Theorem 2.6.

Given: ∠1 and ∠3 are complementary. ∠2 and ∠3 are complementary.

Prove: $\angle 1 \cong \angle 2$

Proof:

Proof:			
Statements	Reasons		
a. ∠1 and ∠3 are complementary.∠2 and ∠3 are complementary.	a. giren		
$m \angle 1 + m \angle 3 = 90;$ $m \angle 2 + m \angle 3 = 90$	b. defcomp		
c. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$	c. Sups.		
d7m/3 -m/3	d. Reflexive Property		
e. <i>m</i> ∠1 = <i>m</i> ∠2	e. Subtr		
f. ∠1 ≅ ∠2	f. deg =		

7. SARGUMENTS Write a two-column proof.

Given: $\angle 4 \cong \angle 7$

Prove: $\angle 5 \cong \angle 6$

5 6

1. 242 27 2. 24225 2627

s <5=26

1. grier 2 VA

3 Subs

15. Given: $\angle 5 \cong \angle 6$

Prove: ∠4 and ∠6 are supplementary.

1 2576 2 24+25=180

3. <4+26=180 4. <4 +16 are supp

