

Geometry 6.6

Apply properties of trapezoids

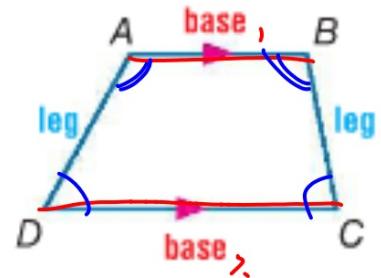
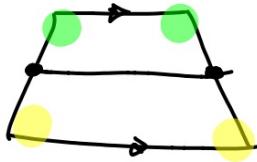
Apply properties of kites

★ median (of a triangle)

trapezoid

base(s) $2 \parallel$ sides

leg(s) $not \parallel$

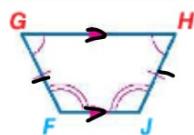


base angles (of a trapezoid)

isosceles trapezoid $2 \cong$ legs

★ midsegment (of a trapezoid)

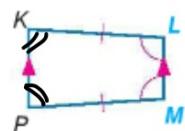
(sometimes called "median")

kite

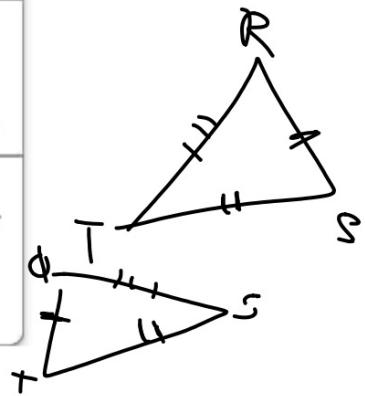
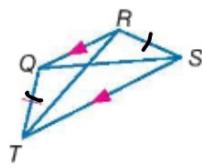


Little book: add trapezoid & kite

Theorems Isosceles Trapezoids

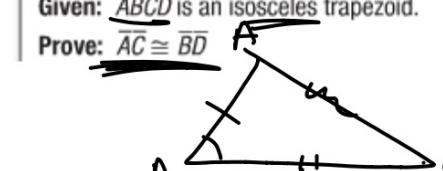

6.21 If a trapezoid is isosceles, then each pair of base angles is congruent.

Example If trapezoid $FGHJ$ is isosceles, then $\angle G \cong \angle H$ and $\angle F \cong \angle J$.

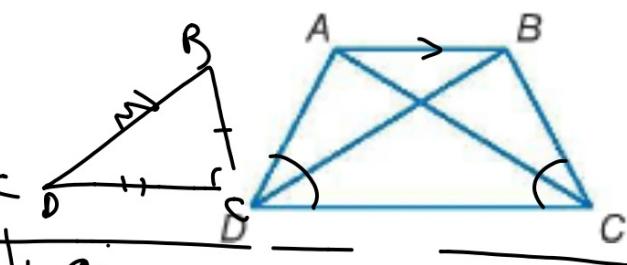


6.22 If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.

Example If $\angle L \cong \angle M$, then trapezoid $KLMP$ is isosceles.

6.23 A trapezoid is isosceles if and only if its diagonals are congruent.


Example If trapezoid $QRST$ is isosceles, then $\overline{QS} \cong \overline{RT}$. Likewise, if $\overline{QS} \cong \overline{RT}$, then trapezoid $QRST$ is isosceles.

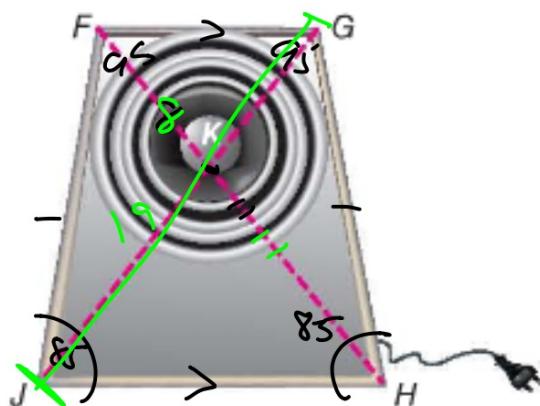
Proof Part of Theorem 6.23


Given: $ABCD$ is an isosceles trapezoid.

Prove: $\overline{AC} \cong \overline{BD}$

1. $ABCD$ is isos. trap
2. $\angle A D C \cong \angle B C D$
3. $\triangle A D C \cong \triangle B C D$
4. $\overline{AC} \cong \overline{BD}$

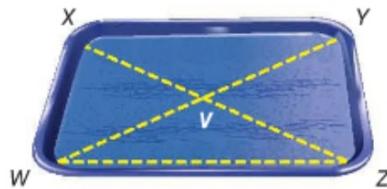
overlapping triangles


1. given
2. base \angle s isos trap \cong
3. $\triangle A S$
4. CPCTC

 Real-World Example 1 Use Properties of Isosceles Trapezoids

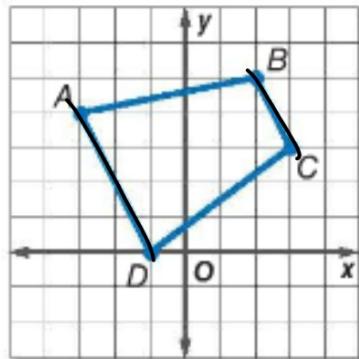
MUSIC The speaker shown is an isosceles trapezoid. If $m\angle FJH = 85$, $FK = 8$ inches, and $JG = 19$ inches, find each measure.

a. $m\angle FGH$ 95°


b. KH 11

Guided Practice

1. **CAFETERIA TRAYS** To save space at a square table, cafeteria trays often incorporate trapezoids into their design. If $WXYZ$ is an isosceles trapezoid and $m\angle YZW = 45$, $WV = 15$ centimeters, and $VY = 10$ centimeters, find each measure.


A. $m\angle XWZ$ B. $m\angle WXY$
C. XZ D. XV

Example 2 Isosceles Trapezoids and Coordinate Geometry

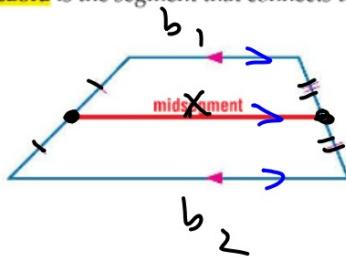
COORDINATE GEOMETRY Quadrilateral $ABCD$ has vertices $A(-3, 4)$, $B(2, 5)$, $C(3, 3)$, and $D(-1, 0)$. Show that $ABCD$ is a trapezoid and determine whether it is an isosceles trapezoid.

reuel/Photographer's Choice/Getty Images

Arrange

What does it mean to be "1/2 the sum of..." ?

$$= \frac{1}{2} (a + b)$$

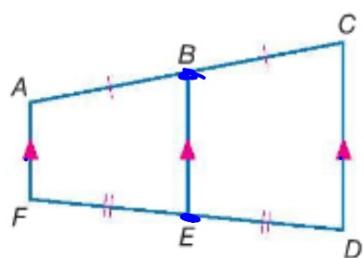

$$= \frac{a+b}{2}$$

Reading Math

Midsegment A midsegment of a trapezoid can also be called a *median*.

The **midsegment of a trapezoid** is the segment that connects the midpoints of the legs of the trapezoid.

$$= \frac{1}{2}(b_1 + b_2)$$


Doesn't have to be isosceles

P. 44)

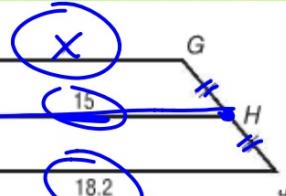
Theorem 6.24 Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base and its measure is one half the sum of the lengths of the bases.

Example If \overline{BE} is the midsegment of trapezoid $ACDF$, then $\overline{AF} \parallel \overline{BE}$, $\overline{CD} \parallel \overline{BE}$, and $BE = \frac{1}{2}(AF + CD)$.

$$15 = \frac{1}{2}(x+18, 2)$$

Standardized Test Example 3 Midsegment of a Trapezoid

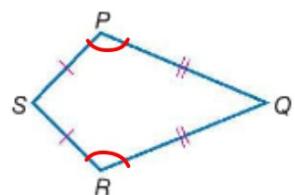
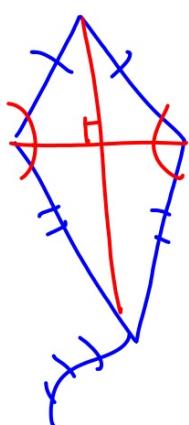

GRIDDED RESPONSE In the figure, \overline{LH} is the midsegment of trapezoid $FGJK$. What is the value of x ?

$$15 = \frac{1}{2}(x+18, 2)$$

$$15 = \frac{1}{2}x + 9.1$$

$$-9.1 \quad -9.1$$

$$\frac{2(5.9)}{11.8} = \left(\frac{1}{2}x\right) \cdot 2$$

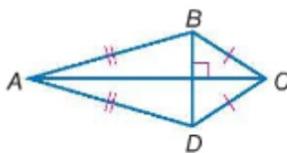



Note: The figure is not drawn to scale.

$$\frac{15 + 18 - 2}{2}$$

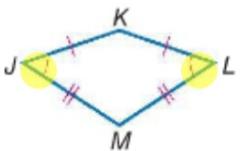
$$2(5.9) = \left(\frac{1}{2}x\right) \cdot 2$$

2 Properties of Kites A **kite** is a quadrilateral with exactly two pairs of consecutive congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.


StudyTip

Kites The congruent angles of a kite are included by the non-congruent adjacent sides.

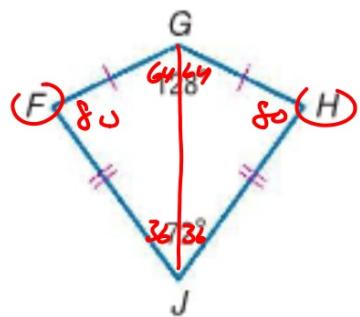
Theorems Kites


6.25 If a quadrilateral is a kite, then its diagonals are perpendicular.

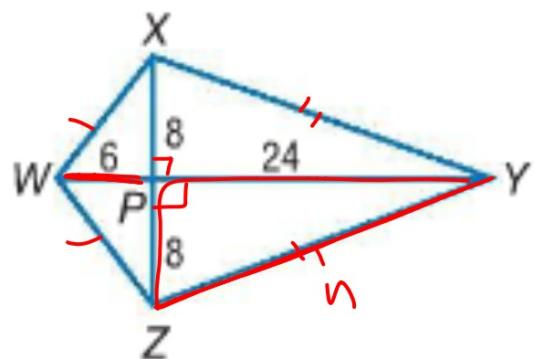
Example If quadrilateral $ABCD$ is a kite, then $\overline{AC} \perp \overline{BD}$.

6.26 If a quadrilateral is a kite, then exactly one pair of opposite angles is congruent.

Example If quadrilateral $JKLM$ is a kite, $\overline{JK} \cong \overline{KL}$, and $\overline{JM} \cong \overline{LM}$, then $\angle J \cong \angle L$ and $\angle K \not\cong \angle M$.



You will prove Theorems 6.25 and 6.26 in Exercises 31 and 32, respectively.


Example 4 Use Properties of Kites

a. If $FGHJ$ is a kite, find $m\angle GFJ$.

$$80^\circ \quad \frac{160}{2}$$

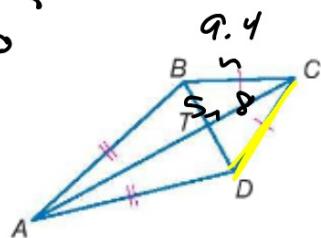
b. If $WXYZ$ is a kite, find ZY .

$$\begin{aligned}8^2 + 24^2 &= n^2 \\64 + 576 &= n^2 \\640 &= n^2 \\25.3 &= n\end{aligned}$$

$$\frac{272}{2}$$

Guided Practice

4A. If $m\angle BAD = 38$ and $m\angle BCD = 50$, find $m\angle ADC$.


4B. If $BT = 5$ and $TC = 8$, find CD . ≈ 9.4

$$5^2 + 8^2 = n^2$$

$$25 + 64 = n^2$$

$$89 = n^2$$

136°

Finish Little book: "Quadrilaterals"

{ parallelogram
rectangle
rhombus
square
Add:

6.6 p. 444

→ trapezoid
→ kite

9-27 odd
35-49 odd

74-77