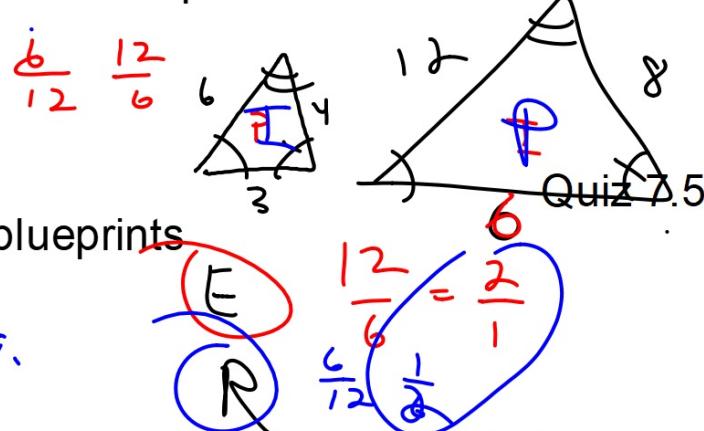


Geometry 7.7

Interpret scale models

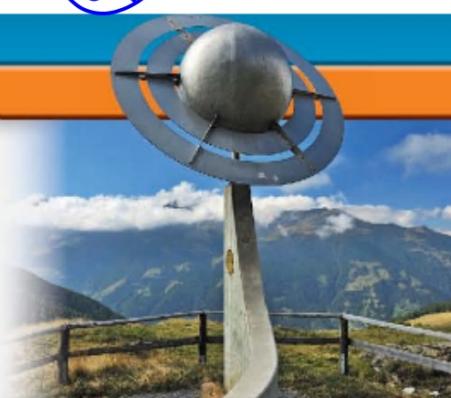
Use scale factors to solve problems


scale factor

scale model

scale drawing

scale


activity: maps & blueprints

Drawn to scale

Why?

- In Saint-Luc, Switzerland, Le Chemin des planètes, has constructed a scale model of each planet in the solar system. It is one of the largest complete three-dimensional scale models of the solar system. The diameter of the center of the model of Saturn shown is 121 millimeters; the diameter of the real planet is about 121,000 kilometers.

Set up a proportion

Example 1 Use a Scale Drawing

MAPS The scale on the map shown is 0.4 inch : 40 miles. Find the actual distance from Nashville to Memphis.

$$\frac{0.4 \text{ in}}{40 \text{ mi}} = \frac{5 \text{ in}}{x \text{ mi}}$$

$$200 = 0.4x$$

$$500 = x$$

1. **MAPS** Find the actual distance between Nashville and Chattanooga.

$$\frac{3 \text{ in}}{50 \text{ mi}}$$

scale on a map (can sometimes mix units) example: map, blueprint

"scale factor" (always same units), model length first example: building a model car

$$\frac{5}{70}$$

2 Use Scale Factors The scale factor of a drawing or scale model is written as a unitless ratio in simplest form. Scale factors are always written so that the model length in the ratio comes first.

Example 2 Find the Scale

SCALE MODEL This is a miniature replica of a 1923 Checker Cab. The length of the model is 6.5 inches. The actual length of the car was 13 feet.

a. What is the scale of the model?

$$\frac{6.5 \text{ in}}{13 \text{ ft}} \quad \frac{1 \text{ in}}{2 \text{ ft}}$$

b. How many times as long as the actual car is the model?

$$\frac{SF}{\text{model}} = \frac{1 \text{ in}}{2 \text{ ft}} \quad \frac{1 \text{ in}}{24 \text{ in}}$$

$$\text{act} \quad 24 \times$$

Scale:
Mixed units ok (always label)
Simplify answers

1:24

SF: Always same unit (scale factor)
...how many times as big...
don't need to label (since always same)

messy: change to same unit... smaller unit is usually easier
(inches instead of feet, etc.)

2. SCALE MODEL Mrs. Alejandro's history class made a scale model of the Alamo that is 3 feet tall. The actual height of the building is 33 feet 6 inches.

A. What is the scale of the model? $\frac{1 \text{ ft}}{11.2 \text{ ft}}$

B. How many times as tall as the actual building is the model? How many times as tall as the model is the actual building?

$$\frac{1}{11.2} \approx 0.09$$

11.2

Scale: Mixed units ok

$$\frac{3 \text{ ft.}}{33 \text{ ft.} 6 \text{ in.}} = \frac{3 \text{ ft.}}{33.5 \text{ ft.}} = \frac{1 \text{ ft.}}{X}$$
$$3X = 33.5$$
$$X \approx 11.2$$

(scale factor...same unit)

©SuperStock, (r)Construction and photo by architect.com

Real-WorldLink

The St. Louis Gateway Arch is the tallest national monument in the United States at 630 feet. The span of the base is also 630 feet. The arch weighs 17,246 tons and can sway a maximum of 9 inches in each direction during high winds.

Source: Gateway Arch Facts

$$1 \text{ in} = 60 \text{ ft}$$

$$\frac{630}{11} = 57.3$$

Real-World Example 3 Construct a Scale Model

SCALE MODEL Suppose you want to build a model of the St. Louis Gateway Arch that is no more than 11 inches tall. Choose an appropriate scale and use it to determine the height of the model. Use the information at the left.

$$\frac{1 \text{ in}}{100 \text{ ft}} = \frac{x}{630}$$

$$100x = 630$$

$$x = 6.3$$

$$\frac{1 \text{ in}}{150 \text{ ft}} = \frac{x}{630}$$

$$\frac{1 \text{ in}}{75 \text{ ft}} = \frac{x}{630}$$

$$x = 8.4$$

• Proportion

• 1 inch = ???

Maybe guess & check at first

• use friendly numbers for scale (bec. you are building it)

• has to fit in 11 inches

$$\frac{1 \text{ in}}{60 \text{ ft}} = \frac{x}{630}$$
$$x = 10.5$$

P. 521
5-16 all
31-49 00