

Geometry 8.4

Use right triangles to find trigonometric ratios

Use trig ratios to find angle measures in right triangles

opposite

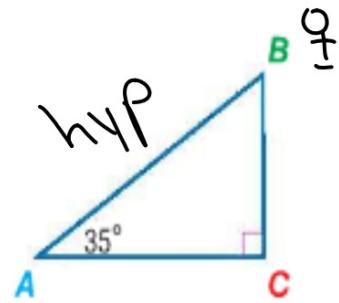
adjacent

trigonometry

ratio

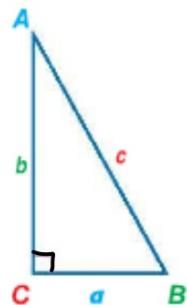
trig ratio

sine $\frac{a}{h}$


cosine $\frac{b}{h}$

tangent $\frac{a}{b}$

inverse function (algebra 1)


SohCahToa

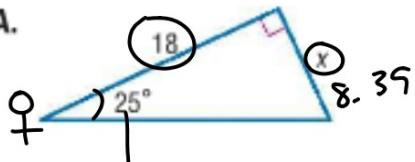
SohCahToa

P 568

Words	Symbols
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the sine of $\angle A$ (written $\sin A$) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the hypotenuse (hyp).	$\sin A = \frac{\text{opp}}{\text{hyp}}$ or $\frac{a}{c}$ $\sin B = \frac{\text{opp}}{\text{hyp}}$ or $\frac{b}{c}$
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the cosine of $\angle A$ (written $\cos A$) is the ratio of the length of the leg adjacent $\angle A$ (adj) to the length of the hypotenuse (hyp).	$\cos A = \frac{\text{adj}}{\text{hyp}}$ or $\frac{b}{c}$ $\cos B = \frac{\text{adj}}{\text{hyp}}$ or $\frac{a}{c}$
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the tangent of $\angle A$ (written $\tan A$) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the leg adjacent $\angle A$ (adj).	$\tan A = \frac{\text{opp}}{\text{adj}}$ or $\frac{a}{b}$ $\tan B = \frac{\text{opp}}{\text{adj}}$ or $\frac{b}{a}$

Douglas Peebles Photography/Alamy

SohCahToa

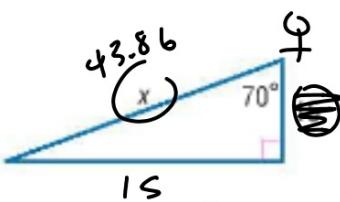

Make sure your calculator is set to DEGREES

~~SohCahToa~~

Guided Practice

Find x to the nearest hundredth.

3A.


$$\tan 25 = \frac{x}{18}$$

$$0.4663 = \frac{x}{18}$$

$$\tan(45) = 1$$

$$x = 8.39$$

3B.

$$\sin 70 = \frac{15}{x}$$

$$\cos 70 = \frac{15}{x}$$

$$0.3420 = \frac{15}{x}$$

$$0.3420x = 15$$

$$43.86$$

Reading Math**Inverse Trigonometric Ratios**

The expression $\sin^{-1} x$ is read *the inverse sine of x* and is interpreted as the angle with sine x . Be careful not to confuse this notation with the notation for negative exponents—

$$\sin^{-1} x \neq \frac{1}{\sin x}.$$

Instead, this notation is similar to the notation for an inverse function, $f^{-1}(x)$.

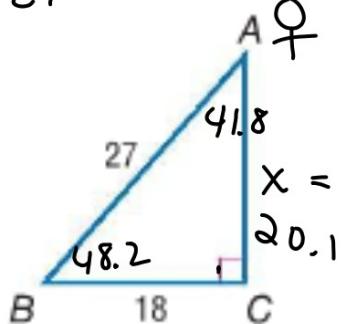
$$\begin{array}{c}
 (\overset{-1}{}) \quad \text{ratio} \\
 x \div \left. \begin{array}{l} \sin \\ \cos \\ \tan \end{array} \right\} \\
 + - \quad \left. \begin{array}{l} \sin^{-1} \\ \cos^{-1} \\ \tan^{-1} \end{array} \right\} \text{angles} \\
 (\overset{2}{}) = \sqrt{}
 \end{array}$$

$$\sin(\overset{-1}{}) = \overset{-1}{\sin}(\overset{-1}{})$$

$$\boxed{2^{\text{nd}}} \sin\left(\frac{1}{2}\right) = 30$$

sine=ratio
inverse sine=angle

PS71


KeyConcept Inverse Trigonometric Ratios	
Words	If $\angle A$ is an acute angle and the sine of A is x , then the inverse sine of x is the measure of $\angle A$.
Symbols	If $\sin A = x$, then $\sin^{-1} x = m\angle A$.
Words	If $\angle A$ is an acute angle and the cosine of A is x , then the inverse cosine of x is the measure of $\angle A$.
Symbols	If $\cos A = x$, then $\cos^{-1} x = m\angle A$.
Words	If $\angle A$ is an acute angle and the tangent of A is x , then the inverse tangent of x is the measure of $\angle A$.
Symbols	If $\tan A = x$, then $\tan^{-1} x = m\angle A$.

SohCahToa

Example 4 Find Angle Measures Using Inverse Trigonometric Ratios

Use a calculator to find the measure of $\angle A$ to the nearest tenth.

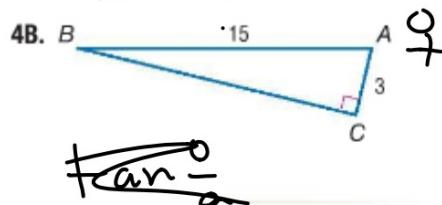
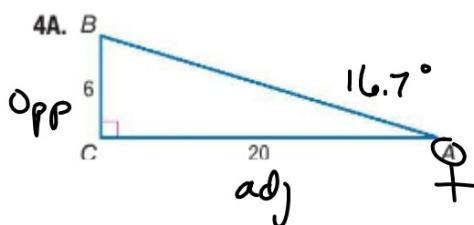
$$x^2 + 18^2 = 27^2$$

$$\sin A = \frac{18}{27}$$

$$\sin A = 0.6667$$

$$\sin^{-1}(0.6667) = 41.8^\circ$$

"Solve"



Where are you?

What trig function applies?

Use inverse to find angles.

Guided Practice

Use a calculator to find the measure of $\angle A$ to the nearest tenth.

$$\tan A = \frac{6}{20}$$

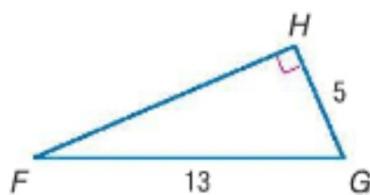
$$\tan A = 0.3$$

$$\tan^{-1}(0.3) =$$

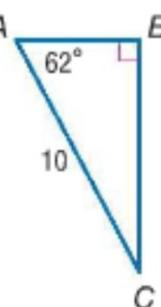
$$\cos A = \frac{3}{15}$$

$$\cos A =$$

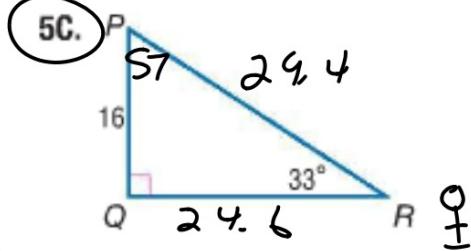
$$A = 78.5^\circ$$


Solve the triangle: find all parts (6)

Guided Practice


SohCahToa

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.


5A.

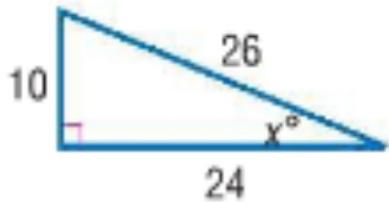
5B.

5C.

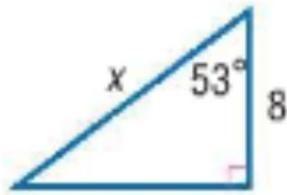
$$\tan R =$$

$$\sin 33 = \frac{16}{1} \quad \frac{1}{x}$$

$$\tan P = \frac{x}{16}$$


$$\tan 57 = \frac{x}{16} \quad x = 24.6$$

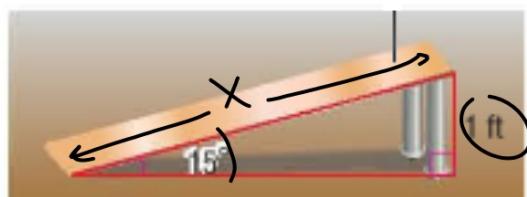
$$\frac{0.5446x}{0.5446} = \frac{16}{0.5446}$$
$$x = 29.4$$



Find x . Round to the nearest tenth, if necessary.
(Lesson 8-4)

13.

14.



Soh Cah Toa

15. **SKATEBOARDING** Lindsey is building a skateboard ramp. She wants the ramp to be 1 foot tall at the end and she wants it to make a 15° angle with the ground. What length of board should she buy for the ramp itself?

Round to the nearest foot. (Lesson 8-4)

$$\sin 15^\circ = \frac{1}{x}$$

R8 | Extra Practice

8, 4

WB skills 1-130

prac 1-9