Algebra 2 3.4
Solve systems of linear equations in 3 variables
Use systems to solve problems

ordered triple
no solution 7=0
infinitely many solutions
substitution
elimination
whiteboards

(a, b, \bigsilon)

Solve each system of equations

1.
$$-3a - 4b + 2c = 28$$
 3
 $a + 3b - 4c = -31$ 7
 $2a + 3c = 11 \times 5$ 7
 $-9a - 12/b + 6c = 84$ 7
 $-9a - 12/b + 6c = -124$ 7
 $-9a - 10c = -124$ 7
 $-9a - 10c = -40 \times 2$ 7

How is this problem different?

12.
$$-2x + 15y + z = 44$$

 $4x + 3y + 3z = 18$
 $-3x + 6y - z = 8$
 $\times -4y + 3 = -27$
 $\Rightarrow x + 3y - 3 = -27$

b.
$$-6a + 9b - 12c = 21$$

 $-2a + 3b - 4c = 7$
 $10a - 15b + 20c = -30$

GuidedPractice

2A.
$$-4x - 2y - z = 15$$

 $12x + 6y + 3z = 45$
 $2x + 5y + 7z = -29$

2B.
$$3x + 5y - 2z = 13$$

 $-5x - 2y - 4z = 20$
 $-14x - 17y + 2z = -19$

Writing equations

30a + 25b + 20c = 456,000 a + b + c = 19,200a = b

Seats closest to an amphitheater stage cost \$30. The seats in the next section cost \$25, and lawn seats are \$20. There are twice as many seats in section B as in section A. When all 19,200 seats are sold, the amphitheater makes \$456,000.

A system of equations in three variables can be used to determine the number of seats in each section.

$$\begin{array}{rcl}
10b + 3g + 2h & = 99 \\
4b + 8g + 2h & = 78 \\
2b + 3g + 1h & = 33.60
\end{array}$$

$$\begin{array}{rcl}
t = 1 & -3 + -2 + t = -4 \\
-f + s + t = -4 & = -4
\end{array}$$

$$\begin{array}{rcl}
f + s + t = -4 \\
-f + s - t = 0 \\
f + s - t = -5
\end{array}$$

$$\begin{array}{rcl}
f + s = -5 \\
f = -3
\end{array}$$