Algebra 2 3.4
Solve systems of linear equations in 3 variables
Use systems to solve problems

ordered triple (X, Y, ₹) 3 ° 4.

no solution
infinitely many solutions
substitution
elimination

whiteboards? if time

CK 8 simple & hr.

1e + 185 5 8

6+2=49

Correct

e+s - 8

85 + 2e 2 40

Can you solve this?

One Solution

The three individual planes intersect at a specific point. (X, Y, Z)

Infinitely Many Solutions

The planes intersect in a line.

Every coordinate on the line represents a solution of the system.

The planes intersect in the same plane.

Every equation is equivalent. Every coordinate in the plane represents a solution of the system.

Don't worry about "which" infinitely many it is...

No Solution There are no points in common with all three planes.

We won't worry about which no solution it is.

Be strategic! 1, elimination

- 2. elim again (or could use subs)
- 3. ans. is ordered triple

Example 1 A System with One Solution

3.7-2-5-4-7=35 Solve the system of equations. $\frac{1}{3} + \frac{10}{10} + \frac{28}{2} = \frac{35}{2}$

$$3x - 2y + 4z = 35$$

$$-4x + y - 5z = -36$$

$$5x - 3y + 3z = 31$$

The coefficient of 1 in the second equation makes y a good choice for elimination.

-12x+3y-157, =-/08

$$\frac{3x-3y+42=35}{-5x+3y-102=-72} -12x+3y-157, z-18 (x,y,z,)$$

$$\frac{5x-3y+42=35}{5x-3y-102=-72} -12x+3y-157, z-18 (x,y,z,)$$

$$\frac{5x-3y+42=35}{5x-3y-102=-72} -10x+37=31$$

$$\frac{5x-3y+37=31}{5x-3y+37=31}$$

$$\frac{10x+12z=-7y}{5x-3y+37=31}$$

$$\frac{3}{e^{-7}x^{-1}} = -77$$

$$10 \times 12 = -77$$

$$\frac{3}{7} = -3$$

Strategery: elim is usually a good place to start

GuidedPractice

1A.
$$2x + 4y - 5z = 18$$

5. $-3x + 5y + 2z = -27$

C. $-5x + 3y - z = -17$

4 + 8y - 10 = -36

-15x + 25y + 10 = -136

-11x + 33y = 171

e - $\frac{1}{3x}$ + $\frac{1}{1}$ y = -61

Seats closest to an amphitheater stage cost \$30. The seats in the next section cost \$25, and lawn seats are \$20. There are twice as many seats in section B as in section A. When all 19,200 seats are sold, the amphitheater makes \$456,000.

A system of equations in three variables can be used to determine the number of seats in each section.

Whiteboards

1B.
$$4x - 3y + 6z = 18$$

 $-x + 5y + 4z = 48$
 $6x - 2y + 5z = 0$

Example 2 No Solution and Infinite Solutions

Solve each system of equations.

a.
$$5x + 4y - 5z = -10$$

 $-4x - 10y - 8z = -16$
 $6x + 15y + 12z = 24$

b.
$$-6a + 9b - 12c = 21$$

 $-2a + 3b - 4c = 7$
 $10a - 15b + 20c = -30$

GuidedPractice

2A.
$$-4x - 2y - z = 15$$

 $12x + 6y + 3z = 45$
 $2x + 5y + 7z = -29$

2B.
$$3x + 5y - 2z = 13$$

 $-5x - 2y - 4z = 20$
 $-14x - 17y + 2z = -19$

