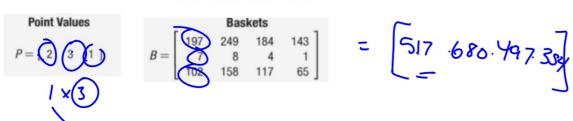

Algebra 2 3.6
Multiply matrices
Use the properties of matrix multiplication

 The table shows the scoring summary for Lisa Leslie, the WNBA's all-time scoring leader, during her highest scoring seasons. Her total baskets can be summarized

Ûx ε N P

How would you calculate her point total for each season?


2005

2006

394+21 +102

.	Lisa Leslie Regular Season Scoring					
2pt	Туре	2005	2006	2008	2009	
3nt	Field Goal	197	249	184	143	
3pt	3-Point Field Goal	7	8	4	1	
1pt	Free Throw	102	158	117	65	
٠,٢٠	Source: WNBA					

2005 2006 2008 2009

dimensions have to work out...

dimensions must work out...

PT

Example 1 Dimensions of Matrix Products

Determine whether each matrix product is defined. If so, state the dimensions of the product.

a. $A_3 \times 4$ and $B_4 \times 2$ yes 3×2

b.
$$A_5$$
 and $B_5 \times 4$

whiteboards

Determine whether each matrix product is defined. If so, state the dimensions of the product.

1. $A_2 \xrightarrow{B_1 \times 3}$

1 -

2 x 3

2. $C_{5 \times 4} D_{0 \times 4}$

20

3. E₈ 6 F 10

ye

8×10

GuidedPractice

1A. $A_{4\times 6}$ and $B_{6\times 2}$

1B. $A_{3\times 2}$ and $B_{3\times 2}$

Example 2 Multiply Square Matrices

Find XY if
$$X = \begin{bmatrix} 6 & -3 \\ -10 & -2 \\ 2 & 2 \end{bmatrix}$$
 and $Y = \begin{bmatrix} -5 & -4 \\ 3 & 3 \\ 2 & 2 \end{bmatrix}$.

$$\begin{bmatrix} -2 & 1 & -33 \\ 4 & 4 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

Matrix Multiplication

(My Darling Clementine)

Row by column, row by column, Multiply them line by line. Add them up to form a matrix, Now you're doing it just fine!

2. Find
$$UV$$
 if $U = \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix}$ and $V = \begin{bmatrix} 2 & -1 \\ 6 & -5 \end{bmatrix}$.

$$UV = \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 6 & -5 \end{bmatrix} = \begin{bmatrix} 64 & -50 \\ -18 & 13 \end{bmatrix}$$

$$VU = \begin{bmatrix} 2 & -1 \\ -3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} 13 & 20 \\ 45 & 64 \end{bmatrix}$$

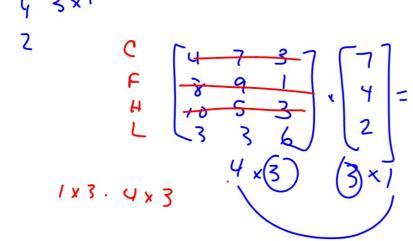
$$VU = \begin{bmatrix} 2 & -1 \\ 6 & -5 \end{bmatrix} \cdot \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} 13 & 20 \\ 45 & 64 \end{bmatrix}$$

Sy +10

whiteboards

Find each product, if possible.

6.
$$[9 \ -2] \cdot \begin{bmatrix} -2 & 4 \\ 6 & -7 \end{bmatrix} = \begin{bmatrix} -30 & 50 \end{bmatrix}$$


$$-1 & 8 + -12$$

$$36 + 14$$

Real-World Example 3 Multiply Matrices

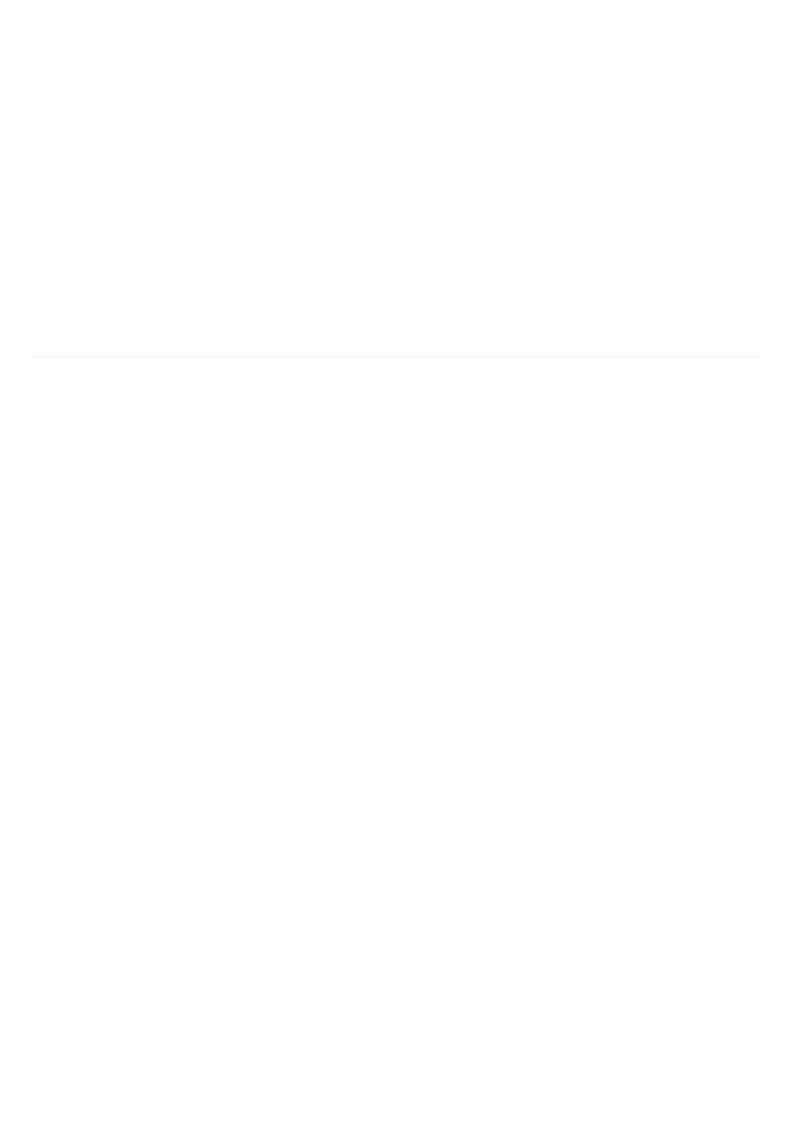
SWIM MEET At a particular swim meet, 7 points were awarded for each first-place finish, 4 points for second, and 2 points for third. Find the total number of points for each school. Which school won the meet?

		4	_
School	First Place	Second Place	Third Place
Central	4	7	3
Franklin	8	9	1
Hayes	10	5	3
Lincoln	3	3	6

8.
$$\begin{bmatrix} -8 & 7 & 4 \\ -5 & -3 & 8 \end{bmatrix} \cdot \begin{bmatrix} 10 & 6 \\ 8 & 4 \end{bmatrix}$$

$$2 \times 3 \quad 2 \Rightarrow 3$$

A.B & B.A


Is
$$3x4=4x3$$
?

A $(R+C)$

A $R+C$

B $A+CA$

Is AxB = BxA?

