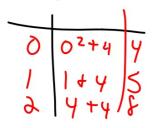
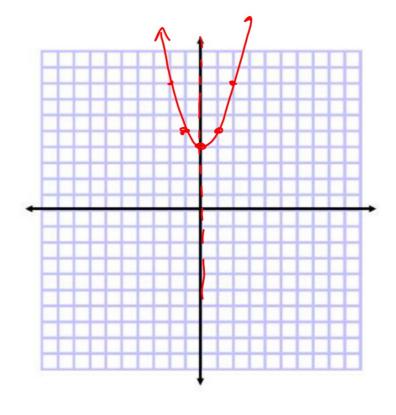
Algebra 2 4.4
Perform operations with imaginary numbers*
Perform operations with complex numbers*

radical $\sqrt{49} = 7$ simplify (by casting out pairs) geometry $\sqrt{-4} = ()()$ square root property real number imaginary unit pure imaginary numbers

pure imaginary numbers complex numbers complex conjugate

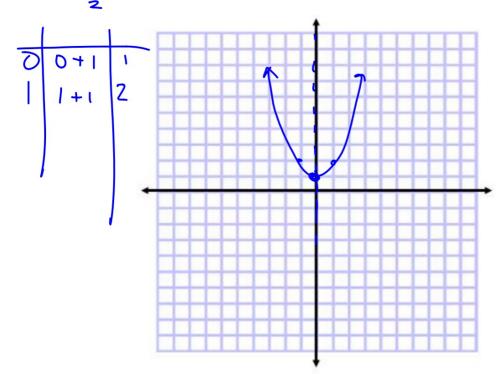

*New concept--first time you have seen this idea!


No solution = no real solution!

Solve by graphir
$$x^2 + 4 = 0$$

$$y = x^{2} + 4$$

$$X = -\frac{0}{2 \cdot 1} = 0$$



$$x^{2} + 1 = 0$$

$$y = x^{2} + 1$$

$$x = -\frac{0}{2}$$

Graph the related function Solve using algebra

The **imaginary unit** *i* is defined to be:

The imaginary unit
$$i$$
 is defined to be
$$i = \sqrt{-1}.$$

$$\sqrt{-1} = i \text{ maginary}$$

$$= i$$

Numbers of the form $6i\sqrt{-2i}$, and $i\sqrt{3}$ are called **pure imaginary numbers**. Pure imaginary numbers are square roots of negative real numbers. For any positive real

number b, $\sqrt{-b^2} = \sqrt{b^2} \cdot \sqrt{-1}$ or bi.

Phus Complex

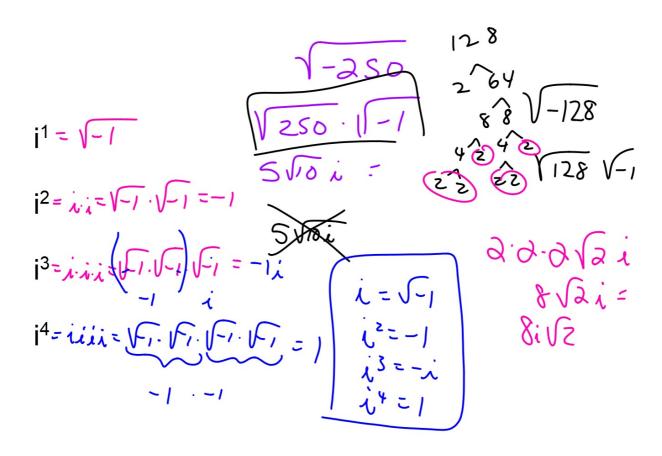
2+3;

5:3;

5:3;

7+15;

Guided Practice


1A.
$$\sqrt{-18}$$
 $\sqrt{18}$, $\sqrt{-1}$
18
 $\sqrt{3}\sqrt{2}\cdot\sqrt{-1}$
 $\sqrt{3}\sqrt{2}\cdot\sqrt{-1}$
 $\sqrt{3}\sqrt{2}\cdot\sqrt{-1}$

125

18. $\sqrt{-125}$ 5 as

105 $\sqrt{-1}$ 5 $\sqrt{5}$ 5 $\sqrt{5}$ 5 $\sqrt{5}$ 5 $\sqrt{5}$ 5 $\sqrt{5}$

"Casting out pairs" to simplify the real part What about the negative?

Example 2 Products of Pure Imaginary Numbers

Simplify.

a.
$$-5i \cdot 3i = -15$$

GuidedPractice

2A.
$$3i \cdot 4i$$
 340 2B. $\sqrt{-20} \cdot \sqrt{-12}$ 2C. i^{31} $|3i|$ $|$

432 V-18 · V-24 16 27 V18 · i V24 i (3) 9 (2) 2) 3 3 (2) 2) 3 V 3 i i -12 V 3

Example 3 Equation with Pure Imaginary Solutions

Solve $x^2 + 64 = 0$.

GuidedPractice

Solve each equation.

3A.
$$4x^2 + 100 = 0$$

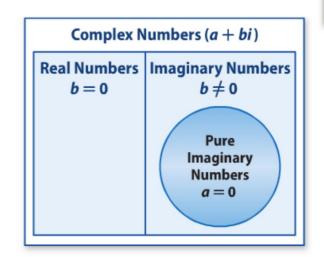
3B.
$$x^2 + 4 = 0$$

2 Operations with Complex Numbers Consider 2 + 3i. Since 2 is a real number and 3i is a pure imaginary number, the terms are not like terms and cannot be combined. This type of expression is called a **complex number**.

KeyConcept Complex Numbers

K

Words


A complex number is any number that can be written in the form a + bi, where a and b are real numbers and i is the imaginary unit. a is called the real part, and b is called the imaginary part.

Examples 5 + 2i 1 - 3i = 1 + (-3)i

The Venn diagram shows the set of complex numbers.

- If b = 0, the complex number is a real number.
- If $b \neq 0$, the complex number is imaginary.
- If *a* = 0, the complex number is a pure imaginary number.

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. That is, a + bi = c + di if and only if a = c and b = d.

real = real imag = imag

Example 4 Equate Complex Numbers

Find the values of x and y that make 3x - 5 + (y - 3)i = 7 + 6i true.