Algebra 2 4.6
Solve quadratic equations by using the quadratic formula
Use the discriminant to determine the number and type
of roots for a quadratic equation

standard form (of a quadratic) $\alpha x^2 + bx + c = 0$ discriminant $b^2 - 4ac$ quadratic formula complex number conjugate pair irrational number exact answer

QF song

KeyConcept Quadratic Formula

The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$, where $a \neq 0$, Words are given by the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^2 + 5x + 6 = 0 \rightarrow x = \frac{-5 \pm \sqrt{5^2 - 4(1)(6)}}{2(1)}$$

QF song!

GuidedPractice

Solve each equation by using the Quadratic Formula.

4A.
$$3x^2 + 5x + 4 = 0$$

4B.
$$x^2 - 4x = -13$$

$$X = 4 + 13 = 0$$

$$X =$$

Roots and the Discriminant In the previous examples, observe the relationship between the value of the expression under the radical and the roots of the quadratic equation. The expression $b^2 - 4ac$ is called the **discriminant**.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftarrow \text{discriminant}$$

d= b2-4ac

Just the part in RED!

Find the value of the discriminant for each quadratic equation. Then describe the number and type of roots for the equation.

a.
$$7x^2 - 11x + 5 = 0$$

b. $x^2 + 22x + 121 = 0$

onsider $ax^2 + bx + c = 0$, where a ,	b, and c are rational numbers and	$da \neq 0$.
Value of Discriminant	Type and Number of Roots	Example of Graph of Related Function
$b^2 - 4ac < 0;$ $b^2 - 4ac$ is a perfect square.	2 real, rational roots	, in the second
$b^2-4ac>0;$ b^2-4ac is not a perfect square.	2 real, irrational roots	
b^2-4ac 0	1 real rational root	, o
$b^2-4a < 0$ kg	2 complex roots	

P. 268

double root

$$\begin{array}{c} x = -b \\ + \sqrt{b^2 4ac} \\ 2a \end{array}$$

$$\begin{array}{c} 2a \\ + \sqrt{b^2 4ac} \\ 2a \\ \end{array}$$

$$\begin{array}{c} 2a \\ + \sqrt{b^2 4ac} \\ 2a \\ \end{array}$$

$$\begin{array}{c} 2a \\ + \sqrt{b^2 4ac} \\ \end{array}$$

GuidedPractice

5A.
$$-5x^2 + 8x - 1 = 0$$

5B.
$$-7x + 15x^2 - 4 = 0$$

ConceptSummary Solving Quadratic Equations				
	Method	Can be Used	When to Use	
+	graphing	sometimes	Use only if an exact answer is not required. Best used to check the reasonableness of solutions found algebraically.	
X	factoring	sometimes	Use if the constant term is 0 or if the factors are easily determined. Example $x^2 - 7x = 0$	
3	Square Root Property SRP	sometimes	Use for equations in which a perfect square is equal to a constant. Example $(x-5)^2=18$	
3	completing the square CTS	always	Useful for equations of the form $x^2 + bx + c = 0$, where b is even. Example $x^2 + 6x - 14 = 0$	
X	Quadratic Formula QF	always	Useful when other methods fail or are too tedious. Example $2.3x^2 - 1.8x + 9.7 = 0$	

P. 269 Solving

Whiteboards: