Algebra 2 4.6
Solve quadratic equations by using the quadratic formula
Use the discriminant to determine the number and type of roots for a quadratic equation

standard form (of a quadratic)

a,b,c
radical
discriminant
quadratic formula
complex number
conjugate pair
irrational number
exact answer
QF song

1. graphing
2. CTS
3. factor
4. QF
4. QF
5-21 5+21

5-21 5+21

$$x^{2}+4x-3=0$$

 $+3+3$
 $x^{2}+4x+4=3+4$
 $(x+2)^{2}=1/7$
 $x+2=2\sqrt{7}$
 $x=-2+\sqrt{7}$

Solve by completing the square (keep track of the steps used)

Same steps

Quadratic Formula You have found solutions of some quadratic equations by graphing, by factoring, and by using the Square Root Property. There is also a formula that can be used to solve any quadratic equation. This formula can be derived by solving the standard form of a quadratic equation.

General Case $\frac{ax^{2} + bx + c = 0}{a} = 0$ $x^{2} + bx + c = 0$

🛂 KeyConcept Quadratic Formula

Words The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$, where $a \neq 0$, are given by the following formula. 2s-24

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

$$x^{2} + 5x + 6 = 0 \rightarrow x = \frac{-5 \pm \sqrt{5^{2} - 4(1)(6)}}{2(1)} = \frac{-5 \pm \sqrt{100}}{2(1)}$$

$$\frac{-5t1}{2} = \frac{-4}{2} - \frac{6}{2}$$

$$\times -2 \times -3$$

Quadratic formula song

QF song!

Example 1 Two Rational Roots

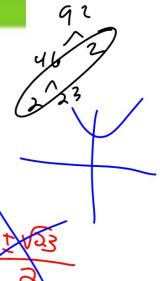
Solve $x^2 - 10x = 11$ by using the Quadratic Formula.

$$\chi^{2} - 10 \times - 11 = 0$$
 $\chi^{2} - 10 \times - 11 = 0$
 $\chi^{2} - 10 \times - 11 = 0$

GuidedPractice

1A.
$$x^2 + 6x = 16$$

1B.
$$2x^2 + 25x + 33 = 0$$


Solve $x^2 + 8x + 16 = 0$ by using the Quadratic Formula. a=1 b=8 c=16

2A.
$$x^2 - 16x + 64 = 0$$

2B.
$$x^2 + 34x + 289 = 0$$

Example 3 Irrational Roots

Solve $2x^2 + 6x - 7 = 0$ by using the Quadratic Formula.

GuidedPractice

3A.
$$3x^2 + 5x + 1 = 0$$

3B.
$$x^2 - 8x + 9 = 0$$

Example 4 Complex Roots

Solve $x^2 - 6x = -10$ by using the Quadratic Formula.

GuidedPractice

4A.
$$3x^2 + 5x + 4 = 0$$

4B.
$$x^2 - 4x = -13$$

Roots and the Discriminant In the previous examples, observe the relationship between the value of the expression under the radical and the roots of the quadratic equation. The expression $b^2 - 4ac$ is called the **discriminant**.

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftarrow \frac{\text{discriminant}}{\text{(What is UNDER the radical?}}$ $\text{Neg} = 2 \iff \text{(iws.g)}$ $\text{POS} = 2 \iff \text{(iws.g)}$ Not VS = in Cont O = |Neal(D, R)| National

Example 2.1 Example 2.1 Example 3.1 Example 3.1 Example 3.1 Example 4.1 Example 4.1 Example 4.1 Example 5.1 Example 6.1 		
$b^2 - 4ac > 0;$ $b^2 - 4ac$ is a perfect square.	2 real, rational roots	, y
$b^2 - 4ac > 0;$ $b^2 - 4ac$ is not a perfect square.	2 real, irrational roots	0 x
$b^2 - 4ac = 0$	1 real rational root	y x
$b^2-4ac<0$	2 complex roots	O x

 $\sqrt{}$

(double root)

$$X^{2} + 3x - 14 = 0$$
 $9 - 4 \cdot 1 \cdot - 14$
 $9 + 56$

a) $d = 65$

b) 2 real irrat

c) $x = -3 t \sqrt{65}$

8270 15-330 35-40 au