Algebra 2 4.5

Solve quadratic equations by using the Square Root property Solve quadratic equations by completing the square

quadratic
$$X^2 + 3x - 2 = 0$$
square root property (SRP)
EWE
perfect square number
perfect square trinomial
completing the square (CTS)

Algebra tiles

Example 1 Equation with Rational Roots

Solve $x^2 + 6x + 9 = 36$ by using the Square Root Property.**

$$(x+3)(x+3)$$
 $(x+3)(x+3)$
 $(x+$

**SRP (it's a perfect square already)

(hint hint...)

Solve each equation by using the Square Root Property.**

$$1A(x^2 - 12x + 36) = 25$$

1B.
$$x^2 - 16x + 64 = 49$$

$$\sqrt{(x-6)^2} = \sqrt{25}$$

$$\sqrt{(x-8)^2} = \sqrt{9}$$

$$\sqrt{(x-8)^2} = \sqrt{9}$$


$$\sqrt{(x-8)^2} = \sqrt{9}$$

$$x = \sqrt{9}$$

Example 2 Equation with Irrational Roots

Solve $x^2 - 10x + 25 \neq 27$ by using the Square Root Property.

GuidedPractice

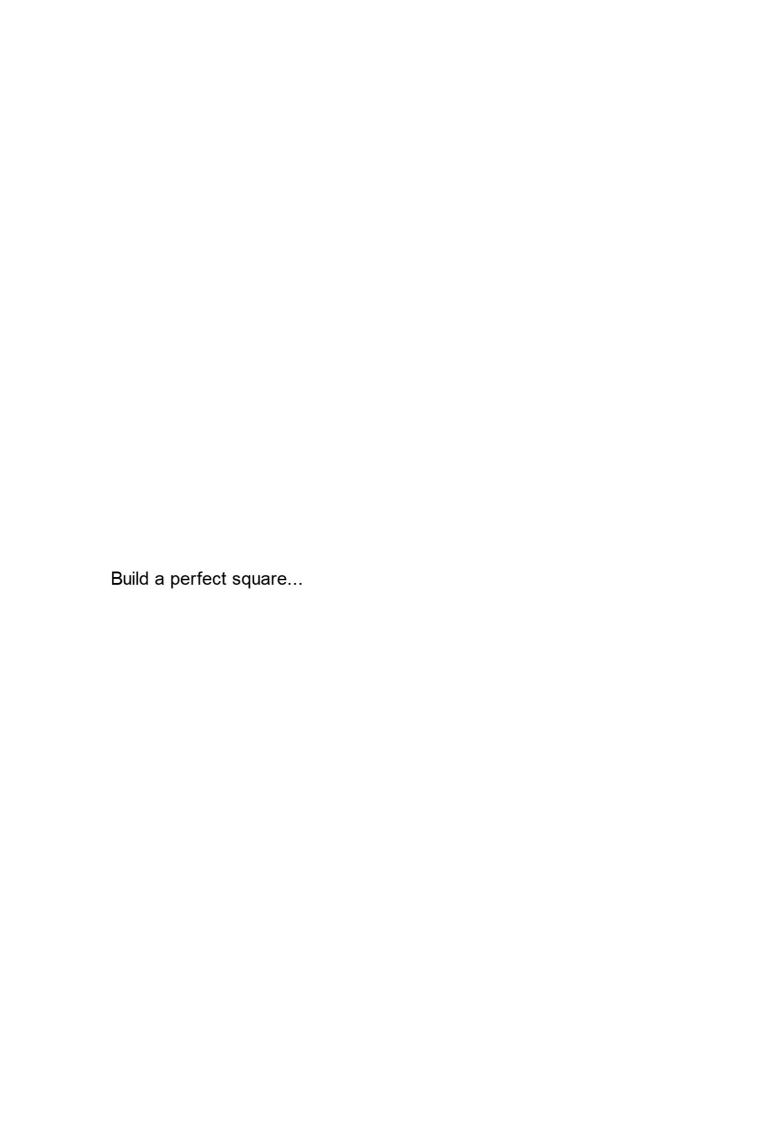
Solve each equation by using the Square Root Property.

round to tenth

2A
$$(x^2 + 8x + 16)$$
 20

2B.
$$x^2 - 6x + 9 = 32$$

EWE
$$(x+3)(x+5) = x^2 + 8x + 15$$
 $(x+4)(x+4) = x^2 + 8x + 16$ $(x+7)(x+7) = x^2 + 14x + 149$


What is the pattern? Predict...

$$(x+9)(x+9) = x^2 + 8x + 81$$

 $(x+10)^2 = x^2 + 28x + 108$

4.5 p. 260 14-25

What does it mean to "complete" something?

finish do the rest

$$x^2 + 4x + ?$$


$$x^2 + 6x + ?$$

Example 3 Complete the Square

Find the value of c that makes $x^2 + 16x + c$ a perfect square. Then write the trinomial as a perfect square.

CTS= build a perfect square...what is missing?

Complete the Square All quadratic equations can be solved using the Square Ro Property by manipulating the equation until one side is a perfect square. This meth is called **completing the square**.

Consider $x^2 + 16x = 9$. Remember to perform each operation on each side of the equation.

Example 4 Solve an Equation by Completing the Square

Solve $x^2 + 10x - 11 = 0$ by completing the square.

Move constant out of the way (if necessary) Build a perfect square. How many more do we need?

GuidedPractice

Solve each equation by completing the square.

4A.
$$x^2 - 10x + 24 = 0$$

4B.
$$x^2 + 10x + 9 = 0$$