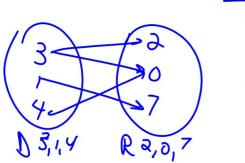


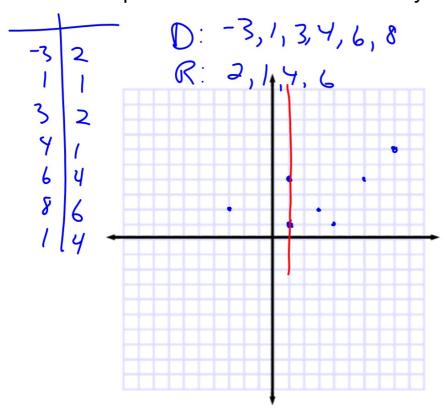
relation numbers paired function each x w. unique y. one-to-one function

onto (not one-to-one) function disregard :(


domain X word
range y word
continuous "+race"
discrete separate parts
vertical line test (VLT)

5 D: 3, 2

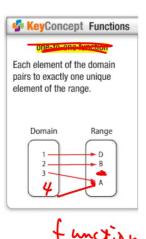
activity: mailman

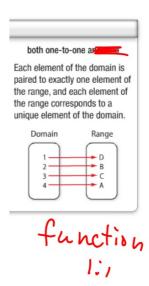

3 -> 7 2 -> 2 R 5,7,2

independent variable dependent variable function notation

VLT

Graph: each x-coordinate has only one y-coordinate

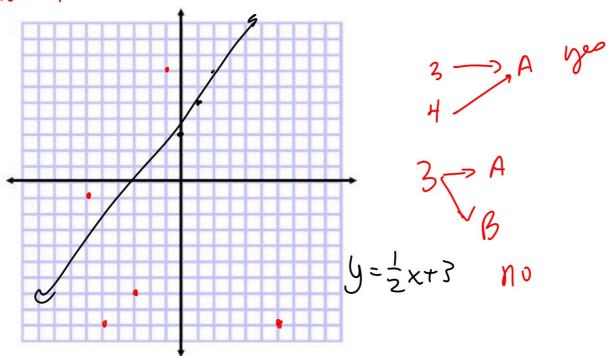

 The table shows the monthly average low and high temperatures for Charlotte, North Carolina.

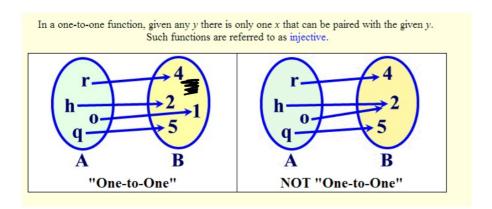

	Month		age Tem arlotte, l		re (°F)	
Month						Jun
Low	32	34	42	49	58	66

Month	Jul	Aug	Sep	Oct	Nov	Dec
Low	71	69	63	51	42	35

mount temp J 32 E 34

Every month has an average temp.
Can 2 different months have the same average low temp?
Can the same month have more than one average low temp?




Example 1 Domain and Range

State the domain and range of each relation. Then determine whether each relation is a *function*. If it is a function, determine if it is *one-to-one*, and the state of the

a. $\{(-6, -1), (-5, -9), (-3, -7), (-1, 7), (6, -9)\}$

function? function?

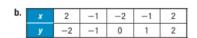
Function: Does every x have a single partner?

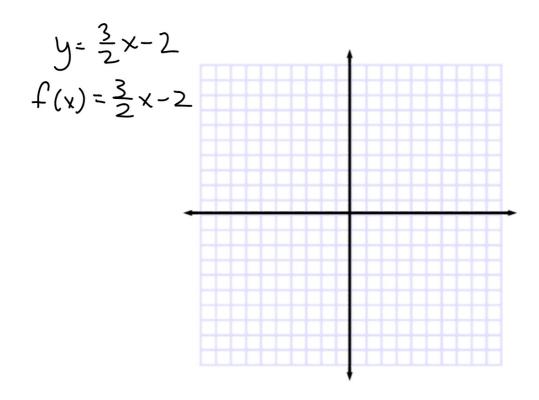
One to one function: Does every x have a single partner?

AND Nobody shares a y partner either?

A relation in which the domain is a set of individual points, like the relation in Graph A, is said to be a **discrete relation**. Notice that its graph consists of points that are not connected. When the domain of a relation has an infinite number of elements and the relation can be graphed with a line or smooth curve, the relation is a **continuous relation**.

× ×


discrete relation


continuous relation

Number of pets

Weight of a pet

discrete vs continuous specific ordered pairs are given vs equation given

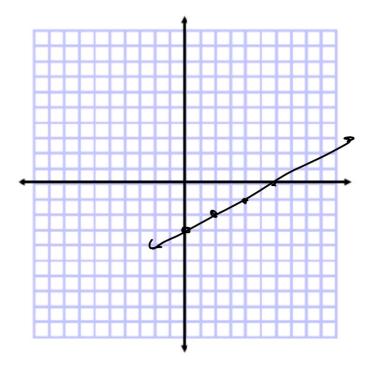
discrete vs continuous equation: we choose the domain to evaluate (could choose anything)

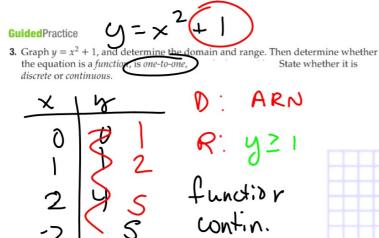
Graph $y = \frac{1}{2}x - 3$, and determine the domain and range. Then determine whether the equation is a function, is one-to-one,

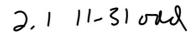
State whether it is discrete or continuous.

D: ARN

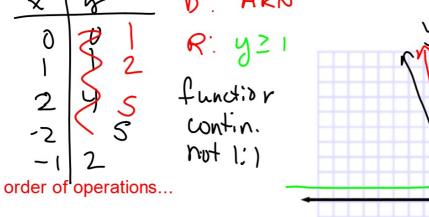
R: ARN

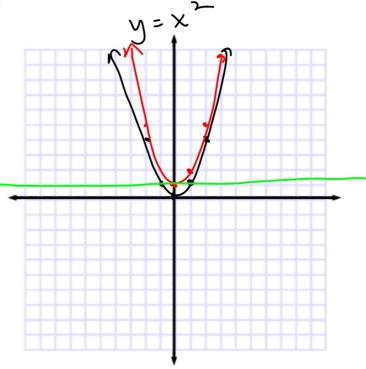

Luncton


Combined the domain and range. Then determine whether the equation is a function, is one-to-one,


State whether it is discrete or continuous.

one to one


PEMDAS GeMA order of operations...



spaghetti & nickles

When an equation represents a function, the variable, often x, with values making up the domain is called the **independent variable**. The other variable, often y, is called the **dependent variable** because its values depend on x.

Function notation (algebra 1) every place you see an x, substitute cut & paste

b. *f*(2*y*)

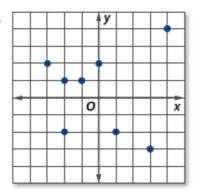
Example 4 Evaluate a Function

Given $f(x) = 2x^2 - 8$, find each value.

a. f(6)

GuidedPractice

Given $g(x) = 0.5x^2 - 5x + 3.5$, find each value.


4A. g(2.8)

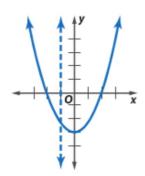
4B. g(4a)

whiteboards

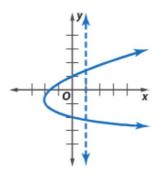
State the domain and range of each relation. Then determine whether each relation is a function. If it is a function, determine if it is one-to-one, onto, both, or neither.

1A.

1B. Domain Range



KeyConcept Vertical Line Test


Words

If no vertical line intersects a graph in more than one point, the graph represents a function.

Models

If a vertical line intersects a graph in two or more points, the graph does not represent a function.

