

Algebra 1

6.4

Solve systems by elimination

Solve problems using

elimination

solve

elimination

DRT charts

whiteboards

speed dating (if time)

zero
pairs
x or y

$$2. \begin{array}{l} 2x + 7y = 1 \\ x + 5y = 2 \end{array} \Rightarrow \begin{array}{r} 2x + 7y = 1 \\ -2x + -10y = -4 \\ \hline -3y = -3 \end{array} \quad (-3, 1)$$

$$\begin{array}{r} 2x + 7 \cdot 1 = 1 \\ 2x + 7 = 1 \\ -7 \quad -7 \\ \hline 2x = -6 \\ 2 \quad 2 \\ x = -3 \end{array}$$

$$\begin{array}{r} -3 + 5 \cdot 1 = 2 \\ -3 + 5 = 2 \\ \quad \quad \quad \parallel \end{array}$$

$$\textcircled{3} \quad \begin{array}{l} 4x + 2y = -14 \\ 5x + 3y = -17 \end{array} \xrightarrow{-3} \begin{array}{l} -12x + -6y = 42 \\ 10x + 6y = -34 \end{array} \quad (-4, 1)$$

$$\begin{array}{rcl} -2x & = & 8 \\ \hline & -2 & -2 \\ 4 \cdot -4 + 2y & = & -14 \\ \hline -16 + 2y & = & -14 \\ \hline +16 & & +16 \\ \hline 2y & = & 2 \\ \hline & 2 & 2 \end{array} \quad \begin{array}{l} 5 \cdot -4 + 3 \cdot 1 = -17 \\ -20 + 3 = -17 \end{array} \quad \text{11}$$

$$\begin{array}{l}
 \begin{array}{l}
 4. \quad 9a + 2b = -8 \quad \xrightarrow{3} \quad 27a + 6b = -24 \quad (a, b) \\
 -7a + 3b = 12 \quad \xrightarrow{2} \quad -14a + 6b = 24
 \end{array} \\
 \hline
 \begin{array}{l}
 13a = 0 \\
 \hline
 13 \quad 13
 \end{array} \\
 (0, 4)
 \end{array}$$

$$9 \cdot 0 + -2b = -8 \quad a = 0$$

$$\begin{array}{l}
 0 + -2b = -8 \\
 \hline
 -2 \quad -2 \\
 b = 4
 \end{array} \quad
 \begin{array}{l}
 -7 \cdot 0 + 3 \cdot 4 = 12 \\
 \therefore 0 + 12 = 12
 \end{array}$$

$$\rightarrow 5x - 3y = 6 \xrightarrow{5} 25x - 15y = 30$$

$$2x + 5y = -10 \xrightarrow{3} 6x + 15y = -30$$

$$5 \cdot 0 + -3y = 6 \quad \frac{31x}{31} = \frac{0}{31}$$

$$0 + -3y = 6 \quad 2 \cdot 0 + 5 \cdot -2 = -10 \quad 0 + -10 = -10 \quad x = 0 \quad (0, -2)$$

$$\frac{-3}{-3} \quad \frac{-10}{-3}$$

$$y = -2$$

$$\begin{array}{l}
 \begin{array}{l}
 7 \cdot 3 + 3 \cdot 2 = 27 \rightarrow 2x - y = 4 \xrightarrow{3} 6x - 3y = 12 \\
 21 + 6 = 27 \quad \Downarrow \quad 7x + 3y = 27
 \end{array}
 \end{array}$$

$$\begin{array}{r}
 2x - y = 4 \\
 7x + 3y = 27 \\
 \hline
 13x = 39
 \end{array}$$

$$\begin{array}{r}
 \frac{13x}{13} = \frac{39}{13} \\
 x = 3
 \end{array}$$

$$\begin{array}{l}
 2x - y = 4 \\
 6 - y = 4 \\
 -6 \quad -6 \\
 \hline
 -y = -2
 \end{array}
 \quad (3, 2)$$

$$7x + 3y = -1$$

$$x + y = -3 \quad \xrightarrow{-3}$$

$$\begin{array}{r} 7x + 3y = -1 \\ -3x - 3y = 9 \\ \hline \end{array}$$

$$7x + 3y = -1$$

$$-14 - 3y = -1$$

$$\hline 3y = -15$$

$$y = -5$$

$$\frac{4x}{4} = \frac{8}{4}$$

$$x = 2$$

$$D = R * T$$

wind

current

upstream

downstream

5. **CCSS SENSE-MAKING** A kayaking group with a guide travels 16 miles downstream, stops for a meal, and then travels 16 miles upstream. The speed of the current remains constant throughout the trip. Find the speed of the kayak in still water.

