Algebra 1 3.4 7
Write and graph direct variation equations
Solve direct variation problems

y-intercept slope m direct variation constant of variation (proportionality k relationship) whiteboards

Quiz 3.3

COV comes from equation Slope comes from ordered pairs

Example 1 Slope and Constant of Variation

Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points.

a.

b.

- **1A.** Name the constant of variation for $y = \frac{1}{4}x$. Then find the slope of the line that passes through (0,0) and (4,1), two points on the line.
- **1B.** Name the constant of variation for y = -2x. Then find the slope of the line that passes through (0, 0) and (1, -2), two points on the line.

W=-3

whiteboards

Name the constant of variation for each equation. Then find the slope of the line that passes through each pair of points.

11

12.

14.

15.

Example 2 Graph a Direct Variation

Graph
$$y = -6x$$
.

Graph
$$y = -6x$$
.

$$y = -6x + 0$$

y=mx+B

ConceptSummary Direct Variation Graphs

- Direct variation equations are of the form y = kx, where $k \neq 0$.
- The graph of y = kx always passes through the origin.
- The slope is positive if k > 0.

The slope is negative if k < 0.

whiteboards

2A.
$$y = 6x + 0$$
 2B. $y = \frac{2}{3}x + 0$

2B.
$$y = \frac{2}{3}x + c$$

20.
$$y = -5x$$

20.
$$y = -5x$$
 20. $y = -\frac{3}{4}x$

Example 3 Write and Solve a Direct Variation Equation

Suppose *y* varies directly as *x*, and y = 72 when x = 8.

a. Write a direct variation equation that relates x and y.

1. find the constant

2. write the equation

3 answer the question

b. Use the direct variation equation to find
$$x$$
 when $y = 63$.

$$\frac{63 = 9x}{9}$$

3. Suppose y varies directly as x, and y = 98 when x = 14. Write a direct variation equation that relates x and y. Then find y when x = -4.

$$y = kx$$
 $y = 7x$
 $\frac{98}{14} = \frac{k \cdot 14}{14}$ $y = -7.-4$
 $k = 7$ $y = -28$

whiteboards

Suppose y varies directly as x. Write a direct variation equation that relates x and y. Then solve.

30. If y = 3.2 when x = 1.6, find y = 3.2

$$y = 14 \times y = 2 \times 3.2 = \frac{k \cdot 1.6}{1.6}$$
 $y = 3.8$
 $y = 3.8$
 $y = 3.8$

31. If y = 15 when $x = \frac{3}{4}$, find x when y = 25.

32. If y = 4.5 when x = 2.5, find y when x = 12.

```
There are other kinds of variation:
```

inverse joint (not today)

directly proportional yet P.185 11-37022 55-67022