Algebra 1 4.6  $\uparrow$   $\uparrow$  Write equations of best-fit lines using linear regression (app). Instructions are technical but not difficult:  $\checkmark \top \ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnotemath{\mathsf{U}}\ifootnot$ 

best-fit line by hand linear regression equation:) of post-fit line (meh) correlation coefficient (r)

Demo Just watch Years since 2000





#### Real-World Example 1 Best-Fit Line

MOVIES The table shows the amount of money made by movies in the United States. Use a graphing calculator to write an equation for the best-fit line for that data.

| 101 111 | at data.                 | $\mathcal{O}$ |      | 2    | 3    | U    | ς    | (.   | $\overline{}$ | $\mathcal{L}$ | 5     | _        |
|---------|--------------------------|---------------|------|------|------|------|------|------|---------------|---------------|-------|----------|
| Year    | $\times \longrightarrow$ | 2000          | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007          | 2008          | 2009  |          |
| Incom   | e (\$ billion)           | 7.48          | 8.13 | 9.19 | 9.35 | 9.27 | 8.95 | 9.25 | 9.65          | 9.85          | 10.21 | <b>←</b> |

correlation 
$$y = m \times + B$$
  
 $y = 0.232 \times + 8.089$   
 $= 0.232 (year) + 8.089$ 

# Graphing calculator startup: (handout)

- 1. Power on
- 2. Clear screen
- 3. y= clear (enter)
- 4. 2nd y= Statplots off (enter)
- 5. Stat...edit...clear lists

Take good notes (on handout??)
The only way to get r is by graphing calc

```
To enter data and graph:
Enter data (stat...edit)
Set window (window)
Set up stat plot (2nd y=)
ON
scatterplot
L1
L2
Mark
Graph
```

To calculate equation and correlation:
Regression equation (stat...calc...linreg)
Write down a, b, r
Enter equation (y=ax+b)
Explain meaning of r

Partner work

#### **Guided**Practice

Write an equation of the best-fit line for the data in each table. Name the correlation coefficient. Round to the nearest ten-thousandth. Let x be the number of years since 2003.

1A. HOCKEY The table shows the number of goals of leading scorers for the Mustang Girls Hockey Team.

| 1  |         |      |      |      | <u> </u> |      | <u> </u> |      |      |  |
|----|---------|------|------|------|----------|------|----------|------|------|--|
| 4  | Year X  | 2003 | 2004 | 2005 | 2006     | 2007 | 2008     | 2009 | 2010 |  |
| L, | Goals 4 | 30   | 23   | 41   | 35       | 31   | 43       | 33   | 45   |  |

**1B. HOCKEY** The table gives the number of goals scored by the team each season.

| Year  | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
|-------|------|------|------|------|------|------|------|------|
| Goals | 63   | 44   | 55   | 63   | 81   | 85   | 93   | 84   |

correlation:



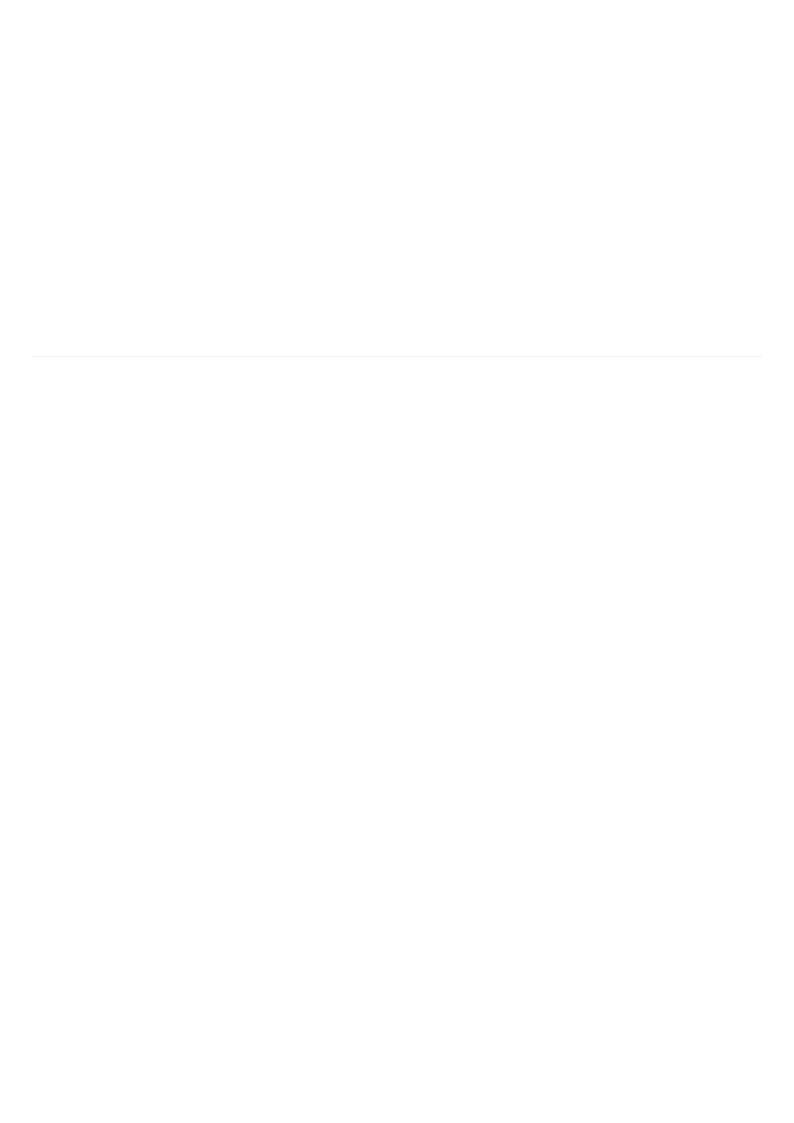
# Real-World Example 3 Use Interpolation and Extrapolation



PAINTBALL The table shows the points received by the top ten paintball teams at a tournament. Estimate how many points the 20th-ranked team received.

| Rank  | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|-----|----|----|----|----|----|----|----|----|----|
| Score | 100 | 89 | 96 | 99 | 97 | 98 | 78 | 70 | 64 | 80 |

Write the equation (calculator) Answer the question


# Disregard median-fit, use linreg

### **Example 4** Median-Fit Line



PAINTBALL Find and graph the equation of a median-fit line for the data in Example 3. Then predict the score of the 15th ranked team.

Another type of calculation, gives almost same answer as linear regression. Disregard median-fit instructions and do linear regression instead.

