Algebra 1 3.1 Identify linear equations, intercepts, and zeros Graph linear equations

```
integer - Whole numbers & opposites
linear equation graph is a line
standard form Ax + By = C
constant numbers
variable change X, y
x-intercept cross x-axis
y-intercept y-axis
```

whiteboards

23. * 12ml. 5% 0.05
* ?X 30% 0.3
*
$$12+7\times 20\% 0.2$$

(Conc xamt) + (cone xamt) = (conc x amt)
(0.05)(12) + 0.3 x = 0.2 (12+x)
0.6 + 0.3 x = 2.4 + 0.2 x
-0.6 -0.2 x -0.6 -0.2 x
 $\frac{0.1 \times 1}{0.1} = \frac{1.8}{0.1}$

The standard form of a linear equation is Ax + By = C, where $A \ge 0$, A and B are not both zero, and A, B, and CWords

are integers with a greatest common factor of 1.

In 3x + 2y = 5, A = 3, B = 2, and C = 5. Examples

In x = -7, A = 1, B = 0, and C = -7.

GCF Pos x tomorrow

Format

Linear equations

$$4x - 5y = 16$$

$$x = 10$$

$$y = -\frac{2}{3}x - 1$$

$$y = \frac{1}{2}x$$

Nonlinear equations

$$2x + 6y^{2} = -25$$

$$y = \sqrt{x} + 2$$

$$x + xy = -\frac{5}{8}$$

$$y = \frac{1}{x}$$

How can we tell by inspection?

In no whomas

product X'Y

yar. in term

Example 1 Identify Linear Equations

Determine whether each equation is a linear equation. Write the equation in standard form.

a.
$$y = 4 - 3x$$

Standardized Test Example 2 Find Intercepts

Find the x- and y-intercepts of the line graphed at the right.

2. HEALTH Find the *x*- and *y*-intercepts of the graph.

Real-World Example 3 Find Intercepts from a Table

SWIMMING POOL A swimming pool is being drained at a rate of 720 gallons per hour. The table shows the function relating the volume of water in a pool and the time in hours that the pool has been draining.

a. Find the x- and y-intercepts of the graph of the function.

b. Describe what the intercepts mean in

this situation.

Draining a Pool	
Time (h)	Volume (gal)
X	
9	10,080
2	8640
6	5760
10	2880
12	1440
14	0

GuidedPractice

3. DRIVING The table shows the function relating the distance to an amusement park in miles and the time in hours the Torres family has driven. Find the *x*- and *y*-intercepts. Describe what the intercepts mean in this situation.

Time	Distance
(n)	(mi)
0	248
1	186
2	124
3	62
4	0

$$(?, o) \longrightarrow (\times, o)$$
s the y-coordinate?

When @ x-intercept, what is the y-coordinate? When @ y-intercept, what is the x-coordinate?

the x-coordinate?
$$(0,?) \rightarrow (0,4)$$

How can I use what I know about intercepts? Example 4 Graph by Using Intercepts

Graph 2x + 4y = 16 by using the x- and y-intercepts.

 $X-in+(8,0) \frac{\partial X=16}{\partial x}$ X=8 $Y-in+(0,4) \frac{y_{y}=16}{y}$

3.1 p.159 13-49 odd

Example 5 Graph by Making a Table

Graph $y = \frac{1}{3}x + 2$.

Solve for y

GuidedPractice

Graph each equation

5A.
$$2x - y = 2$$

You can only choose 3 for x

5B.
$$x = 3$$

You will get -2 for y, no matter what...

50. y = -2

