Also Alg.1

Quadratic formula song

Algebra tiles
$$x^{2} + 6x + 9$$
 $x^{2} + 10x + ?$

Complete the square (what is missing?)

$$x^2 + 8x + 9$$

$$x^2 - 6x + 5$$

Solve each equation by completing the square.

$$5.x^2 + 8x - 20 = 0$$

X=3=1/2

$$(x+4)^{2} = 36$$

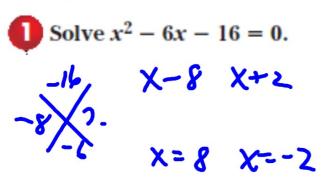
$$(x+4) = 36$$
 $X = -4+6=\lambda$
 $X = 4-6=-10$
 $X = -4 = 6$

are!

Solve $\frac{3n^2 + 7n + 7}{3} = \frac{0}{3}$ by completing the square.

$$n^{2} + \frac{7}{3}n + \frac{49}{86} = -\frac{7^{12}}{312} \frac{49}{36}$$

$$n^{2} + \frac{7}{3}n + \frac{49}{86} = -\frac{7^{12}}{312} \frac{49}{36}$$


$$n^{2} + \frac{7}{3}n + \frac{49}{86} = -\frac{7}{312} \frac{49}{36}$$

$$n^{2} + \frac{7}{3}n + \frac{1}{86} = -\frac{7}{312} \frac{49}{36}$$

$$n^{2} + \frac{7}{3}n + \frac{1}{36} = -\frac{7}{312} \frac{49}{36}$$

$$n^{2} + \frac{7}{3}n + \frac{1}{3}n + \frac{$$

How do you choose a method to solve???

Options:

QF song!

Quadratic Formula The roots of a quadratic equation of the form $ax^2 + bx + c = 0$ wth $a \neq 0$ are given by the following formula.

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Solve each equation.

28.
$$3s^2 - 5s + 9 = 0$$

29.
$$x^2 - 3x - 28 = 0$$

28.
$$3s^2 - 5s + 9 = 0$$
 29. $x^2 - 3x - 28 = 0$ **30.** $4w^2 + 19w - 5 = 0$

Choice of method

discriminant =
$$b^2 - 4ac$$

$$d = 34$$

Where have you seen b2-4ac before?

Discriminant	Nature of Roots/Zeros	Graph
		\

"nature of the roots" is not the same question as "solve"

Find the discriminant of $x^2 - 4x + 15 = 0$ and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

$$d = b^{2} - 4ac$$

$$= -4.4 - 4.1.15$$

$$= 16 - 60$$

$$= -44 = -4$$

Find the discriminant of each equation and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

$$7. m^2 + 12m + 36 = 0$$

8.
$$t^2 - 6t + 13 = 0$$

Find the discriminant of each equation and describe the nature of the roots of the equation. Then solve the equation by using the Quadratic Formula.

20.
$$6m^2 + 7m - 3 = 0$$
 21. $s^2 - 5s + 9 = 0$

21.
$$s^2 - 5s + 9 = 0$$

22.
$$36d^2 - 84d + 49 = 0$$
 23. $4x^2 - 2x + 9 = 0$

23.
$$4x^2 - 2x + 9 = 0$$

+ 2 real (PS) rational - 2 comply 0 1 real DR.