Trig 4.1

*Algebra 2 Ch. 5 & Ch. 7 Reminder: study guides on GCR

Determine roots of polynomial equations *
Apply the fundamental theorem of algebra (# of roots) *

```
factor ... x-factor
polynomial (in one variable)
degree
leading coefficient
polynomial function
    zeros (real)
polynomial equation
    Roots (can be real or imag.)
imaginary number
complex number
Fundamental Theorem of Algebra

1000x<sup>18</sup> + 500x<sup>10</sup> + 250x<sup>5</sup> is a polynomial in one variable.
```


b. Determine whether 4 is a zero of
$$f(x)$$
.

$$d=3 f(4)=(4)^{3}-6(4)^{2}+10(4)-8$$

$$f(4)=0$$

$$yes$$

Fundamental Theorem of Algebra	Every polynomial equation with degree greater than zero has at least one root in the set of complex numbers.
	A corollary to the Fundamental Theorem of Algebra states that the degree of a polynomial indicates the number of possible roots of a polynomial equation.
Corollary to the Fundamental Theorem of Algebra	Every polynomial $P(x)$ of degree n ($n>0$) can be written as the product of a constant k ($k\neq 0$) and n linear factors. $P(x) = k(x-r_1)(x-r_2)(x-r_3)\dots(x-r_n)$ Thus, a polynomial equation of degree n has exactly n complex roots, namely $r_1, r_2, r_3, \dots, r_n$.

Degree = number of possible roots (...could be double root x=3 or x=3) (might not be real)

Complex conjugate partners (alg 2)

Pairs 3 + 2 i 3 - 2 i

5 - 3 i 5 + 3 i

7 - 13 i

N roots: At most... (some could also be complex conjugate partner pairs)

Solve the equation:

$$x^{2} + 3x + 6 = 0$$

$$x = \frac{1}{3}$$

$$x = -\frac{1}{3} + \frac{1}{3} + \frac{1$$

X2 --- = 0

Write the equation with roots x = 2 and x = -5How many factors? Work backwards!

 $\begin{array}{ccc}
X^{2}+3X-10=0 \\
X+5 \\
X-2 \\
\hline{-2x-10} \\
X+2=0 \\
X=2 \\
X=-5
\end{array}$

Complex conjugate partners...

Did they tell you ALL the roots? They don't have to...

 $y = x^{2}$ 4 State the number of complex roots

State the number of complex roots of the equation $X^2 = 0 = 0$. Then find the roots and graph the related function.

factor...

4.1 p. 210 15-370