

64 in ~ 16cm

https://www.youtube.com/watch?v=So9gSIDT6Kg

Change from radian to degree measure
Change from degree to radian measure
Find the length of an arc given the
measure of the central
angle
Find the area of a sector

reference angles

proportion

unit circle

handy angles

**radian (new)

circular arc

central angle

measure in inches measure in cm

circles and radii
1 complete circle = 360° - 277 rak

a 180° r Trad

180°

proportion: radians

degrees

Proportion

 \bigcirc a. Change 330° to radian measure in terms of π .

$$\frac{180 \times 2}{180} = \frac{330 \pi}{180}$$

Handy angles

Proportion

Change each degree measure to radian measure in terms of π . **6**. 570°

 5.240°

$$\frac{240^{\circ}}{x} = \frac{180^{\circ}}{11}$$

in terms of
$$\pi$$

$$X = \frac{19}{6} T$$

Change each radian measure to degree measure. Round to the nearest tenth, if necessary.

7.
$$\frac{3\pi}{2}$$

- 100.3

$$\frac{x.77}{3.14} = 180(1.75)$$

reference angle?

Evaluate each expression.

9. $\sin \frac{3\pi}{4}$

10. $\tan \frac{11\pi}{6}$

reference angle?

Radian measure can be used to find the length of a circular arc. A circular arc is a part of a circle. The arc is often defined by the central angle that intercepts it. A central angle of a circle is an angle whose vertex lies at the center of the circle.

What fraction of the circle is it?

180 (1 (1		0 144 4		C (1		
What is the	circumference	יא VVhat	traction	of the	circle	IS IT?

Length of an Arc

The length of any circular arc s is equal to the product of the measure of the radius of the circle r and the radian measure of the central angle θ that it subtends.

 $s = r\theta$

3 Given a central angle of 128°, find the length of its intercepted arc in a circle of radius 5 centimeters. Round to the nearest tenth.

Given the measurement of a central angle, find the length of its intercepted arc in a circle of radius 15 inches. Round to the nearest tenth.

11. $\frac{5\pi}{6}$

12. 77°