Trig 6.3

Complete spaghetti graphs Identify periodic functions Use the graphs of sine and cosine functions

Quiz 6.1-6.2

METEOROLOGY The average monthly temperatures for a city demonstrate a repetitious behavior. For cities in the Northern Hemisphere, the average monthly temperatures are usually lowest in January and highest in July. The graph below shows the average monthly temperatures (°F) for Baltimore, Maryland, and Asheville, North Carolina, with January represented by 1.

Does it repeat horizontally? How long does it take?

Can it "slide over"?

Periodic ction and Period A function is *periodic* if, for some real number α , $f(x + \alpha) = f(x)$ for each α in the domain of f.

What is the length of the repeating unit?

The least positive value of α for which $f(x) = f(x + \alpha)$ is the *period* of the function.

Graphing calculator set mode to degrees (today) or <u>radians (usually)</u>
Make sure you know where you are...

Now fill in with radians

Properties of the Graph of $y = \sin x$

- 1. The period is 2π . (36) 2. The domain is the set of real numbers.
- 3. The range is the set of real numbers between -1 and 1 Inclusive.
- 4. The x-intercepts are located at πn, where n is an integer.
 5. The y-intercept is 0.
- 6. The maximum values are y = 1 and occur when x = π/2 + 2πn, where n is an integer.
 7. The minimum values are y = -1 and occur when x = 3π/2 + 2πn,
- where n is an integer.

Why does the graph repeat every 2π

Use the pattern(s) to extend as necessary.

Find the values of θ for which $\sin \theta = 0$ is true.

Graph $y = \sin x$ for $3\pi \le x \le 5\pi$.