Trig 5.7

Determine whether a triangle has one, two, or zero solutions Solve triangles using the law of sines

Quiz 5.5-5.6

included angle
non-included angle
obtuse
acute
ambiguous
ex: "That's great"

SSA

State Farm "jacked up" commercial https://www.youtube.com/watch? v=317vQgEiNRE

law of sines

SSA

Goldilocks story

activ: toothpicks and SSA

Toothpicks and triangles SSA (remember from Geom?)

When it is NOT the included angle

Goldilocks theorem! Acute angle:

if acute...

SSA: NOT the included angle

Too short Just right Too long

- No triangle exists.
 Exactly one triangle exists.
 Two triangles exist.

JR

Obtuse angle

Either it's long enough to reach, or it isn't.

Goldilocks theorem

Determine the number of possible solutions for each triangle.

a.
$$A = 30^{\circ}$$
, $\alpha = 8$, $b = 10$

b.
$$b = 8$$
, $c = 10$, $B = 118^{\circ}$

- 1. What does it need to be "just right"? j.r.
- 2. Too short?
- 3. Too long? between b & JR? more than b

Determine the number of possible solutions for each triangle.

4.
$$A = 113^{\circ}$$
, $a = 15$, $b = 8$

5.
$$B = 44^{\circ}$$
, $a = 23$, $b = 12$

One 50/

Consider that more than one solution may exist...

Or no solution at all...

First find out what would be just right...

Find all solutions for each triangle. If no solutions exist, write none. Round to the nearest tenth.

6.
$$C = 17^{\circ}$$
, $a = 10$, $c = 11$

7.
$$A = 140^{\circ}, b = 10, a = 3$$

11-290

Find all solutions for each triangle. If no solutions exist, write *none*. a. $a=4, b=3, A=112^{\circ}$

8.
$$A = 38^{\circ}$$
, $b = 10$, $a = 8$

8.
$$A = 38^{\circ}$$
, $b = 10$, $a = 8$ **9**. $C = 130^{\circ}$, $c = 17$, $b = 5$