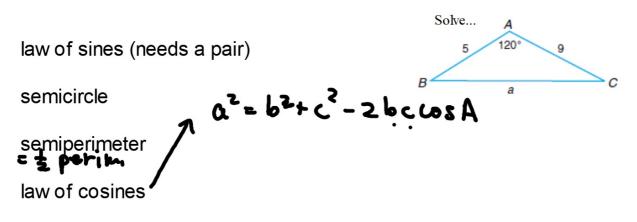
Trig 5.8

Solve triangles using the law of cosines
Find the area of triangles



Hero's formula (Heron's formula)

whiteboards

Quiz Thurs. 5.7-5.8

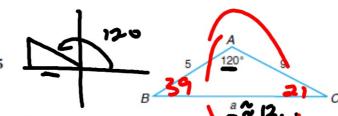
When pairs are not known...

Law of Cosines

Let $\triangle ABC$ be any triangle with a, b, and c representing the measures of sides opposite angles with measurements A, B, and C, respectively. Then, the following are true.

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$ Jeremish was a builling (?)

Solve each triangle. a. $A = 120^{\circ}$, b = 9.



$$\alpha^2 = 5^2 + 9^2 - 2.5.9.\cos 120$$

$$a^2 = 25 + 81 + (+45)$$
 $a^2 = 151$
 $\sin 120 = \frac{5}{\sin 120}$

b.
$$a = 24$$
, $b = 40$, $c = 18$
 $18^{2} = 24^{2} + 40^{2} - [2 \cdot 24 \cdot 40 \cdot \cos C]$
 $324 = 576 + 1600 - 1920 \cdot \cos C$
 $-571 - 576 - 1600$
 -1600
 -1600
 $-1852 = -1920 \cdot \cos C$
 $18 = 24$
 $5104 = 24 \cdot \sin 15$
 $18 \cdot \sin 4 = 24 \cdot \sin 15$
 $18 \cdot \sin 4 = 24 \cdot \sin 15$
 $18 \cdot \sin 4 = 24 \cdot \sin 15$
 $18 \cdot \sin 4 = 24 \cdot \sin 15$
 $18 \cdot \sin 4 = 24 \cdot \sin 15$

Solve each triangle. Round to the nearest tenth.

5.
$$a = 32$$
, $b = 38$, $c = 46$

6.
$$a = 25$$
, $b = 30$, $C = 160^{\circ}$

Heron's formula semicircle... semiperimeter...

Hero's

Hero's Formula If the measures of the sides of a triangle are a, b, and c, then the area, K, of the triangle is found as follows.

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
 where $s = \frac{1}{2}(a+b+c)$

s is called the semiperimeter.

3 Find the area of $\triangle ABC$ if a = 4, b = 7, and c = 9.

$$|\zeta = \sqrt{10(10-4)(10-7)(10-9)}$$

$$= \sqrt{10\cdot 6\cdot 3\cdot 1}$$

$$= 13.4$$

Find the area of each triangle. Round to the nearest tenth.

8.
$$a = 2$$
, $b = 7$, $c = 8$

9.
$$a = 25$$
, $b = 13$, $c = 17$