Precalc 10.7 $Ax^2 + Bxy + Gy^2 + Dx + Fy + F = 0$

Find the equations of conic sections that have been rotated or translated

Graph rotations and/or translations of conics Use the discriminant to identify conic sections Find the angle of rotation for a given equation

Quiz 10.5-10.6 Thurs.

rotation

Вху

translation T(3,5)

 $(x+3)^2+(y-5)^2=16$

discriminant

degenerate case

translation with respect to (h, k)

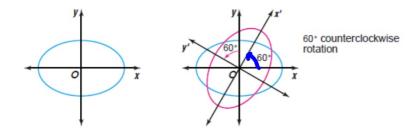
replace x with (x-h)
replace y with (y-k)
(just like moving center of circles...)

Identify the graph of each equation. Write an equation of the translated or rotated graph in general form.

5.
$$x^2 + y^2 = 7$$
 for $T_{(3,2)}$

(Y-5)= 2($x+y$)²-7($x+y$) + 5

(X-3)²+ $(y-2)^2 = 7$


(Y-48x+16

(X-49)+ y^2 - $(y+y)^2$ =75

(X-10)

(X

$$\frac{X^2}{a^2} + \frac{y^2}{b^3} = 1$$

To find the equation of a conic section with respect to a rotation of θ , replace

$$x$$
 with x' cos x + y' sin x and y with x' sin x + y' cos x

Will write on board for test/quiz but you have to know what to do with it...

Find the equation of the graph of $\frac{x^2}{16} - \frac{y^2}{9} = 1$ after it is rotated 45° about the origin. Then sketch the graph and its rotation.

Simplify fractions first $\frac{144}{16}$.

('cos45+\frac{1}{3}\text{sin45+1}\text{cos45} - \frac{1}{2}\text{v} \text{sin45+1}\text{cos45} - \frac{1}{2}\text{v} \text{sin45+1}\text{cos45} + \frac{1}{2}\text{sin45+1}\text{cos45} \\

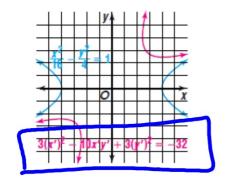
9 (\frac{1}{2}x^2+xy+\frac{1}{2}y^2) = 16(\frac{1}{2}x^2-xy+\frac{1}{2}y^2) = 1444

\text{Does it still look like the equation of a hyperbola?}

-\frac{7}{2}x^2 - 2\frac{1}{2}y^2 + 2\frac{1}{2}xy - 144 = 0

\text{R} \text{Cos45+1}\text{sin45+1}\text{cos45} = 0

\text{Simplify fractions first}


\text{Does it still look like the equation of a hyperbola?}

-\frac{7}{2}x^2 - 2\frac{1}{2}y^2 + 2\frac{1}{2}xy - 144 = 0

\text{R} \text{Simplify fractions first}

$$\frac{\sqrt{2}x^{1} + \sqrt{2}y^{1}}{\sqrt{2}x^{2} + \sqrt{2}y^{1}} = \frac{1}{2}(x^{1})^{2} + 1x^{1}y^{1} + \frac{1}{2}(y^{1})^{2} + 1x^{2}y^{1} + \frac{1}{2}(y^{1})^{2} + 1x^{2}y^{1} + \frac{1}{2}(y^{1})^{2} + 1x^{2}y^{2} + 1x^{2$$

The graph below shows the hyperbola and its rotation.

Discriminant (alg 1 & 2)

$$X = -b^{\frac{1}{2}} \sqrt{b^2 - 4ac}$$

13-310

Identifying Conics By Using the Discriminant

For the general equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$,

- if $B^2 4AC < 0$, the graph is a circle (A = C, B = 0) or an ellipse $(A \neq C \text{ or } B \neq 0)$;
- if $B^2 4AC > 0$, the graph is a hyperbola;
- if $B^2 4AC = 0$, the graph is a parabola.

Needed if something has been rotated Bxy... If B=0 can still identify by inspection

When XY term (rotation) all bets are off.. sine 45, cos 30 etc. changes everything b²-4ac

3 Identify the graph of the equation $x^2 - 4xy + 4y^2 + 5\sqrt{5}y + 1 = 0$.

Angle of Rotation About the Origin For the general equation $Ax^2+Bxy+Cy^2+Dx+Ey+F=0$, the angle of rotation θ about the origin can be found by

$$\theta=\frac{\pi}{4}$$
, if $A=C$, or $an 2\theta=\frac{B}{A-C}$, if $A\neq C$.

 $tan20 = \frac{B}{A-C}$

Identify the graph of the equation $2x^2 + 9xy + 14y^2 - 5 = 0$. Then find θ and use a graphing calculator to draw the graph.

tan2x = B/(A-C)Desmos Graphing calculator: must solve for y= Use quadratic formula not sure it is worth it..

Desmos?

Identify the graph of the equation $2x^2 + 9xy + 14y^2 - 5 = 0$. Then find θ and use a graphing calculator to draw the graph.