Precalc 10.6

Recognize conic sections by their equations
Find a rectangular equation for a curve defined
parametrically
Find a parametric equation for a curve defined
rectangularly

general conic equation

parametric equation

 $sin^2 + cos^2 = 1$ (pythagorean identity)

Graphing calculator: parametric mode

General Equation for Conic Sections

The equation of a conic section can be written in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$

where A, B, and C are not all zero.

Which parts are present? Which parts are missing?

General Form: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$		
Conic Section	Standard Form of Equation	Variation of General Form of Conic Equations
circle	$(x - h)^2 + (y - k)^2 = r^2$	A = C
parabola	$(y - k)^2 = 4p(x - h)$ or $(x - h)^2 = 4p(y - k)$	Either A or C is zero.
ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \text{ or }$ $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	A and C have the same sign and $A \neq C$.
hyperbola	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or }$ $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	A and C have opposite signs.
	xy = k	A=C=D=E=0

Remember that graphs can also be degenerate cases.

Works as long as there is no xy term (rotation)

4 Find parametric equations for the equation $y = x^2 + 3$.

$$y_1 = T^2 + 3$$

Find the rectangular equation of the curve whose parametric equations are given. Then graph the equation using arrows to indicate orientation.

8
$$x = t, y = -t^2 - 6t + 2$$
 $-\infty < t < \infty$ 9. $x = 2 \cos t, y = 3 \sin t; 0 \le t \le 2\pi$

$$\frac{X = 2 \cos T}{2} = \frac{3 \sin T}{3} = \frac{3 \sin T}{3}$$

$$\frac{X = 2 \cos T}{2} = \frac{3 \sin T}{3}$$

$$(0)^{2}T + \sin^{2}T = 1$$

Find parametric equations for each rectangular equation.

cos²t + sin²t = 1

10.
$$y = 2x^2 - 5t$$

$$11. x^2 + y^2 = 36$$

$$(\frac{x}{6})^{2} + (\frac{y}{6})^{2} = 1$$

6. $\frac{x}{6} = \cos T$. 6. $\frac{y}{6} = \sin T$. 6

Graphing calculator activity p. 665 (radians t-step =0.05)