Precalc 10.6

Recognize conic sections by their equations
Find a rectangular equation for a curve defined
parametrically
Find a parametric equation for a curve defined
rectangularly

general conic equation $Ay^2 + By^3 + Cxy + Dx + Ey + F = 0$ parametric equation $\sin^2 + \cos^2 = 1$ (pythagorean identity)

Disectible conics

Graphing calculator: parametric mode

General Equation for Conic Sections

The equation of a conic section can be written in the form

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$$

where A, B, and C are not all zero.

Which parts are present? Which parts are missing?

General Form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$		
Conic Section	Standard Form of Equation	Variation of General Form of Conic Equations
circle	$(x - h)^2 + (y - k)^2 = r^2$	A = C
parabola	$(y - k)^2 = 4p(x - h)$ or $(x - h)^2 = 4p(y - k)$	Either A or C is zero.
ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \text{ or}$ $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	A and C have the same sign and $A \neq C$.
hyperbola	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or }$ $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	A and C have opposite signs.
	xy = k	A=C=D=E=0

Remember that graphs can also be degenerate cases.

Works as long as there is no xy term (rotation)

Explain how you know...

a.
$$6y^2 + 3x - 4y - 12 = 0$$

b.
$$3y^2 - 2x^2 + 5y - x - 15 = 0$$

c.
$$9x^2 + 27y^2 - 6x - 108y + 82 = 0$$

d.
$$4x^2 + 4y^2 + 5x + 2y - 150 = 0$$

Identify the conic section represented by each equation. Then write the equation in standard form and graph the equation.

$$4.x^{2} + 9y^{2} + 2x - 18y + 1 = 0$$

$$5.y^{2} - 8x = -8$$

$$(x^{2} + 2x + 1) + 9(y^{2} - 2y + 1)$$

$$(x + 1)^{2} + 9(y - 1)^{2}$$

$$(x + 1)^{2} + 9(y - 1)^{2}$$

$$(x + 1)^{2} + (y - 1)^{2} = 1$$

$$(x + 1)^{2} + (y - 1)^{2} = 1$$

The general form for a set of parametric equations is

x = f(t) and y = g(t), where t is in some interval I.

$$x = f(t)$$

$$y = g(t)$$
throw a ball

Table of values:

t 1	y	. V
-2	16	-6
71	4	-3
1 2	14	36

let x=t

4 Find parametric equations for the equation $y = x^2 + 3$.

13-270

Find the rectangular equation of the curve whose parametric equations are given. Then graph the equation using arrows to indicate orientation.

8.
$$x = t, y = -t^2 - 6t + 2; -\infty < t < \infty$$
 9. $x = 2\cos t, y = 3\sin t; 0 \le t \le 2\pi$

9.
$$x = 2 \cos t$$
, $y = 3 \sin t$: $0 \le t \le 2\pi$

Table of values:

<u>t x y</u>

Table of values:

<u>t x y</u>

what would be a good window'

Find parametric equations for each rectangular equation. 10. $y = 2x^2 - 5x$

11. $x^2 + y^2 = 36$

 $cos_2t + sin_2t = 1$

Graphing calculator activity p. 665 (radians t-step =0.05)