Precalc 11.1 Graph exponential functions and inequalities Solve problems involving exponential growth and decay

exponent

base

exponential change

 A_{\circ} N_{\circ} etc.

a. Graph the exponential functions $y = 4^x$, $y = 4^x + 2$, and $y = 4^x - 3$ on the same set of axes. Compare and contrast the graphs.

y = 4 (x-2)

b. Graph the exponential functions $y=\left(\frac{1}{5}\right)^x$, $y=6\left(\frac{1}{5}\right)^x$, and $y=-2\left(\frac{1}{5}\right)^x$ on the same set of axes. Compare and contrast the graphs.

- PHYSICS According to Newton's Law of Cooling, the difference between the temperature of an object and its surroundings decreases in time exponentially. Suppose a certain cup of coffee is 95° C and it is in a room that is 3° C. The cooling or this particular cup can be modeled by the equation $y = (10.875)^{t}$ where y is the temperature difference and t is time in minutes.
 - a. Find the temperature of the coffee after 15 minutes.
 - b. Graph the cooling function.

4 FINANCE Determine the amount of money in a money market account providing an annual rate of 5% compounded daily if Marcus invested \$200 and left it in the account for 7 years.

A =
$$P(1+\frac{r}{n})$$
A = $P(1+\frac{r}{n})$
365.7
A = 208 (1+\frac{.05}{365})
= 283.81

0 43041

y=2×+1

15. $y > -4^x + 2$

87-1+Z 0>1

$$17. y \leq \left(\frac{1}{2}\right)^x$$

\$ 1010

Suppose your godmother invests some money for you on the day you are born. The money earns an average rate of 14% per year in the stock market.

You never add any more, or take any out until your 65th birthday.

Your godmother wants you to be a millionaire at age 65.

How much is the initial investment? $= 1000 \left(1 + \frac{14}{365}\right)^{365 \cdot 65}$ = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81 = 111.81