Precalc 11.2
Graph exponential functions and inequalities
Solve problems involving exponential growth and decay

Activity:

M&M activ

•

Trial #	# m&m's face up	# to add	total
1			2
2			Y
3			6
4			10
5			14
6			ا ي
7			37
8			56
9			37 56 88
10		ر د	123
11			

Desmos

GRAPHING CALCULATOR EXPLORATION

TRY THESE Graph $y = b^x$ for b = 0.5, 0.75, 2, and 5 on the same screen.

- 1. What is the range of each exponential function?
- 2. What point is on the graph of each function?
- 3. What is the end behavior of each graph?
- 4. Do the graphs have any asymptotes?

WHAT DO YOU THINK?

- **5**. Is the range of every exponential function the same? Explain.
- **6.** Why is the point at (0, 1) on the graph of every exponential function?
- For what values of a is the graph of y = a^x increasing and for what values is the graph decreasing? Explain.
- Explain the existence or absence of the asymptotes in the graph of an exponential function.

a. Graph the exponential functions $y = 4^x$, $y = 4^x + 2$, and $y = 4^x - 3$ on the same set of axes. Compare and contrast the graphs.

b. Graph the exponential functions $y=\left(\frac{1}{5}\right)^x, y=6\left(\frac{1}{5}\right)^x,$ and $y=-2\left(\frac{1}{5}\right)^x$ on the same set of axes. Compare and contrast the graphs.

Exponential Growth or Decay The equation $N = N_0(1 + r)^t$, where N is the final amount, N_0 is the initial amount, r is the rate of growth or decay per time period, and t is the number of time periods, is used for modeling exponential growth or decay.

t= number of time periods (days, hours, years, etc.)

Compound Interest

The compound interest equation is $(1 + \frac{r}{n})^{nt}$, where P is the principal or initial investment, A is the final amount of the investment, r is the annual interest rate, n is the number of times interest is paid, or compounded each year, and t is the number of years.

mowthly

t=years

4 FINANCE Determine the amount of money is a constrained market account providing an annual rate of 5% compounded daily it Marcus invested \$200 and left it in the account for 7 ears.

A = 200 (1 + 0.05) = 283.6 = 200 (1.000137) = 283.6

- •you never add or take any out of the account
- •they want you to be a millionaire on your 65th birthday

How much did they need to invest?