

p (parabola constant)

For the equation of each parabola, find the coordinates of the vertex and focus, and the equations of the directrix and axis of symmetry. Then graph the equation.

$$6. x^2 = 12(y-1)$$

7.
$$y^2 - 4x + 2y + 5 = 0$$
 8. $x^2 + 8x + 4y + 8 = 0$

$$8. x^2 + 8x + 4y + 8 = 0$$

Standard form or... Complete the square...

 X^2

 $y_2 =$

General Form for the Equation of a Parabola

The general form of the equation of a parabola is $y^2 + Dx + Ey + F = 0$, when the directrix is parallel to the y-axis, or $x^2 + Dx + Ey + F = 0$, when the directrix is parallel to the x-axis.

18. $x^2 + 10x + 25 = -8y + 24$

- 3 Consider the equation $2x^2 8x + y + 6 = 0$.
 - a. Write the equation in standard form.
 - b. Find the coordinates of the vertex and focus and the equations for the directrix and the axis of symmetry.
 - c. Graph the equation of the parabola.

factor complete the square solve for x²=4py

parabola	ellipse	hyperbola e > 1	
e = 1	e < 1, e ≠ 0		
$e = \frac{PF}{PM}$ $e = 1$	$\ell' \qquad e = \frac{PF}{PM} e < 1 \ell$	$e = \frac{PF}{PM}$ $e > 1$	

Write the equation:

10. The parabola passes through the point at (2, -1), has its vertex at (-7, 5), and opens to the right.

what is the sign of p?

Consider x^2 and y^2 equations. Which one is a function?

- - a. Find the coordinates of the focus and the vertex and the equations of the directrix and the axis of symmetry.
 - b. Graph the equation of the parabola.

factor to find p