Precalc 11.7

Find doubling time of exponential relationships Model data using exponential and logarithmic relationships

nonlinear regression

Quiz 11.5-11.6

exponential

logarithmic

"in terms of e"

"linearize the data"

correlation coefficient (r)

Exponential Fu	$nctions: y = ab^x$	Logarithmic Functions: $y = a + b \ln x$		
Growth	Decay	Growth	Decay	
	OV X	y	O X	

3 SKATING An ice skater begins to coast with an initial velocity of 4 meters per second. The table below gives the times required for the skater to slow down to various velocities. Find an equation that models the data.

	velocity (m/s)	3.5	3	2.5	2	1.5	1	0.5
2	time (s)	2.40	5.18	8.46	12.48	17.66	24.95	37.43

Exponential:

"in terms of e" so that you can do half-life, doubling time, etc.

"in terms of e"

Write the equation in terms of e

To linearize data (old school): If you think it is $y=x^2$ then $y=\sqrt{}$ will be linear If you think it is $y=10^*$ then $y=\log x$ will be linear If you think it is $y=e^*$ then $y=\ln x$ will be linear

