Precalc 12.4

Determine whether a series is convergent or divergent
Use the comparison test

converge

diverge

Quiz 12.3-12.4

ratio

ratio test

general term

reference series

comparison test (n>1)

Total distance the ball bounces

video: fibandcci sequences

http://mathandmultimedia.com/2011/04/09/nature-by-numbers-video-by-cristobal-

vila/

$$C = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = ...$$

Ratio Test

Let a_n and a_{n+1} represent two consecutive terms of a series of positive terms. Suppose $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ exists and that $r=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$. The series is convergent if r<1 and divergent if r>1. If r=1, the test provides no information.

r<1 Convergentr>1 Divergent

What if the ratio test is inconclusive? (r=1)

p. 789, also handout

Summary of Series for Reference

- 1. Convergent: $a_1 + a_1r + a_1r^2 + \cdots + a_1r^{n-1} + \cdots$, |r| < 1
- 2. Divergent: $a_1 + a_1r + a_1r^2 + \cdots + a_1r^{n-1} + \cdots, |r| > 1$
- 3. Divergent: $a_1 + (a_1 + d) + (a_1 + 2d) + (a_1 + 3d) + \cdots$
- 4. Divergent: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \dots$ This series is known as 5. Convergent: $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots, p > 1$

Find general term Compare to series that it most resembles n>1 if conv, yours has to be less if div, yours has to be more

Go straight to comparison test (probably bec. r=1...)

Use the comparison test to determine whether the following series are convergent oddivergent.

a. $\frac{4}{5} + \frac{4}{7} + \frac{4}{9} + \frac{4}{11} + \cdots$ 2 n + 3

a.
$$\frac{4}{5} + \frac{4}{7} + \frac{4}{9} + \frac{4}{11} + \cdots$$

$$\frac{1}{2}$$

A ball is dropped from a height of 10 feet. Each bounce of the ball is 1/2 as high as the previous bounce. How far (total) does the ball travel?

$$S = \frac{a_1}{1-r} = \frac{10}{1-0.5} = \frac{10}{0.5} = 20$$

$$S = \frac{\alpha_1}{1 - V} = \frac{S}{1 - 0.5} = \frac{S}{0.5} = 10$$

$$= 30 \Omega_L$$