Precalc 12.5

Use sigma notation

sigma Σ

index of summation

typical element
$$\rightarrow$$
 general factorial

5! = \$5.4.3.2.1 = n(n-1)(n-2)(n-3)...

1.2.3.4-5

Sigma Notation of a Series For any sequence a_1 , a_2 , a_3 , ..., the sum of the first k terms may be written $\sum_{n=1}^k a_n$, which is read "the summation from n=1 to k of a_n ." Thus, $\sum_{n=1}^k a_n = a_1 + a_2 + a_3 + \cdots + a_k$, where k is an integer value.

Have a plan...

Write each expression in expanded form and then find the sum. a. $\sum_{n=1}^{4} (n^2 - 3)$

a.
$$\sum_{n=1}^{4} (n^2 - 3)$$

N=1	N=2	N=3	n=4
12-3	22-3	32-3	4=3
-5	1	6	13
		l	1

- a. Identify the number of terms in this series.
- b. Write a formula that determines the number of terms t in a finite series if the index of summation has a minimum value of a and a maximum value of b.
- cose the formula in part b to identify the number of terms in the series $\sum_{k=0}^{3} \frac{1}{k+3}$
- d. Verify your answer in part c by writing the series $\sum_{k=-2}^{3} \frac{1}{k+3}$ in expanded form

Write each expression in expanded form and then find the sum.

Write each expression in expanded form and then find the sum.

4.
$$\sum_{n=1}^{6} (n-3)$$
 = 5. $\sum_{k=2}^{5} 4k$ 6. $\sum_{a=0}^{4} \frac{1}{2^a}$ 7. $\sum_{p=0}^{\infty} 5\left(\frac{3}{4}\right)^p$

$$\leq 5.\frac{3}{4}^n = \frac{a_1}{1-r} = \frac{5}{1-\frac{3}{4}} = \frac{5}{4} = \frac{5}{24}$$

b.
$$\sum_{n=1}^{\infty} 5\left(-\frac{2}{7}\right)^{n-1}$$

3 Express the series $15 + 24 + 35 + 48 + \cdots + 143$ using sigma notation.

What is the pattern? you can start anywhere for n...

10.
$$2 - 4 - 10 - 16$$
11. $\frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \frac{3}{32}$

-6 n + 8

-6 n + 8

 $\frac{3}{16} + \frac{3}{32} + \frac{3}{16} + \frac{3}{16}$

10.
$$2 - 4 - 10 - 16$$

11. $\frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \frac{3}{32}$ \cdots 3

$$\sum_{k=1}^{\infty} \frac{3}{2^{k+1}}$$

$$\sum_{n=2}^{\infty} \frac{3}{2^n}$$

n Factorial

01=1

By definition 0! = 1.

Consider numerator and denominator separately