Geometry Quiz 2.7-2.8 today

Review Ch. 2

Test is Tues.

(2 proofs with missing parts)

(2 proofs from scratch)

Inductive Reasoning and Conjecture

Determine whether each conjecture is *true* or *false*. If false, give a counterexample.

- If ∠1 and ∠2 are supplementary angles, then ∠1 and ∠2 form a linear pair.
- If W(-3, 2), X(-3, 7), Y(6, 7), Z(6, 2), then quadrilateral WXYZ is a rectangle.

9_3 Conditional Statements

Determine the truth value of each conditional statement. If true, explain your reasoning. If false, give a counterexample.

- 18. If you square an integer, then the result is a positive integer.
 D 5
- If a hexagon has eight sides, then all of its angles will be obtuse.
- 20. Write the converse, inverse, and contrapositive of the following true conditional. Then, determine whether each related conditional is true or false. If a statement is false, find a counterexample.

If two angles are congruent, then they have the same degree measure.

Inv. notc-> dont some of T conv some deg -> cong T cp if not some deg -> not: T

Example 4

ANB BYC CYD

Use the Law of Syllogism to determine whether a valid conclusion can be reached from the following statements.

- (1) If the measure of an angle is greater than 90, then it is an obtuse angle.
- (2) If an angle is an obtuse angle, then it is not a right angle.
 Oh → no+

valid

2-5 Postulates and Paragraph Proofs

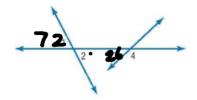
Determine whether each statement is always, sometimes, or never true. Explain.

- Two planes intersect at a point.
- 25. Three points are contained in more than one plane. N
- If line m lies in plane X and line m contains a point Q, then point Q lies in plane X.
- If two angles are complementary, then they form a right angle.

PT P.165

Given:∠1 and∠2 form a linear pair,∠2 and∠3 are supplementary Prove∠1 ≠∠3

r _	1/	2	 3	
		/		
/	/	/		

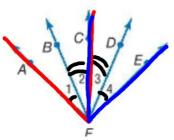

1. <1+42 LP <2+43 supp	18 yes
3. <2+<3=180 4. <1+<2=<2+<3 5. m<1=m+3	2. def LP 3. def Suf 4 Subs 5. Subtr 4. Subs

2–8 Proving Angle Relationships

Find the measure of each angle.
40.
$$\angle 5 = 90$$

41. $\angle 6 = 127$
42. $\angle 7 = 53$

Example 8


Find the measure of each numbered angle if $m\angle 1=72$ and $m\angle 3=26$.

43. PROOF Write a two-column proof.

Given: $\angle 1 \cong \angle 4$, $\angle 2 \cong \angle 3$

Prove: $\angle AFC \cong \angle EFC$

