Geometry 4.2

Apply the triangle sum theorem Apply the exterior angle theorem

remote far away

straight angle 180°

linear pair

auxiliary line

exterior angle (of a triangle)

interior angle (of a triangle)

flow proof (meh)

corollary

GuidedPractice

Find the measures of each numbered angle.

1A. J 28° 71° K

1B.

angle chase

#52+me4=189

me4 = me1+me2+me3
-me2
-me2
-me2
-me2

What do you call it ...?

وبماء

Theorem 4.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

Example $m\angle A + m\angle B = m\angle 1$

:/ meh

A **flow proof** uses statements written in boxes and arrows to show the logical progression of an argument. The reason justifying each statement is written below the box. You can use a flow proof to prove the Exterior Angle Theorem.

Real-World Example 2 Use the Exterior Angle Theorem

FITNESS Find the measure of $\angle JKL$ in the Triangle Pose shown.

2.65-15

GuidedPractice

2. CLOSET ORGANIZING Tanya mounts the shelving bracket shown to the wall of her closet. What is the measure of ∠1, the angle that the bracket makes with the wall?

A **corollary** is a theorem with a proof that follows as a direct result of another theorem. As with a theorem, a corollary can be used as a reason in a proof. The corollaries below follow directly from the Triangle Angle-Sum Theorem.

Corollaries Triangle Angle-Sum Corollaries		
	gles of a right triangle are complementary.	B
Abbreviation: Acute \triangle of a rt. \triangle are comp.		
Example:	If $\angle C$ is a right angle, then $\angle A$ and $\angle B$ are complementary.	A C
4.2 There can be at most one right or obtuse angle in a triangle.		J
	$\angle L$ is a right or an obtuse angle, then $\angle J$ and $\angle K$ sust be acute angles.	L

Example 3 Find Angle Measures in Right Triangles

Find the measures of each numbered angle.

$$m\angle 1 + m\angle TYZ = 90$$
 Acute \triangle of a rt. \triangle are comp.

 $m \angle 1 + 52 = 90$ Substitution

 $m\angle 1 = 38$ Subtract 52 from each side.

3C. ∠4

GuidedPractice

3A. ∠2 **3B.** ∠3

4,2 WB prac.