Geometry 4.2

Apply the triangle sum theorem Apply the exterior angle theorem

remote far away
straight angle
linear pair
auxiliary line
exterior angle (of a triangle)
interior angle (of a triangle)
flow proof (meh)

corollary closely related theorem

Does everybody have the same shape of triangle?

- 1. Shade each vertex of your triangle
- 2. Tear off the corners (vertices)
- 3. Piece together each corner (vertex-together) What do you notice?

Triangle Sum Theorems
MCA+mCB+mCC=180

Theorem 4.1 Triangle Angle-Sum Theorem

Words The sum of the measures of the angles of a triangle is 180.

Example $m \angle A + m \angle B + m \angle C = 180$

Prove A sum Theorem

i. given

i. given

i. drawing

2. mc4+ ml2+ ml3=180 2. Straight

3. <1=<4 <3=<5 3. AM

V. mc1+m22+m23=180 4. Subs.

Real-World Example 1 Use the Triangle Angle-Sum Theorem

SOCCER The diagram shows the path of the ball in a passing drill created by four friends. Find the measure of each numbered angle.

4.2 p 250

9-19 all

GuidedPractice

Find the measures of each numbered angle.

1A. J 3 28° 71° K
L 57° 2

1B.

angle chase

What do you call it ...?

Theorem 4.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

Example $m \angle A + m \angle B = m \angle 1$

:/ meh

A **flow proof** uses statements written in boxes and arrows to show the logical progression of an argument. The reason justifying each statement is written below the box. You can use a flow proof to prove the Exterior Angle Theorem.

Real-World Example 2 Use the Exterior Angle Theorem

FITNESS Find the measure of $\angle JKL$ in the Triangle Pose shown.

GuidedPractice

2. CLOSET ORGANIZING Tanya mounts the shelving bracket shown to the wall of her closet. What is the measure of ∠1, the angle that the bracket makes with the wall?

A **corollary** is a theorem with a proof that follows as a direct result of another theorem. As with a theorem, a corollary can be used as a reason in a proof. The corollaries below follow directly from the Triangle Angle-Sum Theorem.

Example 3 Find Angle Measures in Right Triangles

Find the measures of each numbered angle.

$$m\angle 1 + m\angle TYZ = 90$$
 Acute \triangle of a rt. \triangle are comp.

 $m \angle 1 + 52 = 90$ Substitution

 $m\angle 1 = 38$ Subtract 52 from each side.

GuidedPractice

3A. ∠2

3B. ∠3

3C. ∠4