*Technical...
take good notes!
(Assumes a LOT from Alg. 1)
Will continue Wed.

Geometry 3.6

Find the distance between a point and a line*

Find the distance between parallel lines* ()

pythagorean theorem

hypotenuse

distance

parallel //

perpendicular equidistant

same distance

construction: perpendicular from a point not on a line

p. 216

...because it is the shortest... (why?)

p. 216 constr.

Postulate 3.6 Perpendicular Postulate

Words If given a line and a point not on the line, then there exists exactly one line through the point that is perpendicular to the given line.

Model

GuidedPractice

 Copy the figure. Then construct and name the segment that represents the distance from Q to PR.

p. 216

$$y + \frac{1}{2}x + 1$$
 $y = -2x + 16$ (6,4)
 $\frac{1}{2}x + 1 = -2x + 16$ $y = -2 \cdot 6 + 16$
 $y = -12 + 16$ $y = -12 + 16$

Whiteboards:

- 1. You know 1 ord. pair, you need the other ord. pr. 2. Find the equation of line I^{\star}

- 3. Find the equation of line p (perp. to I)*
 4. Find the point of intersection of p and I*
 (You now know the other ord. pr.)
 5. Find the distance (Pyth. theor.) with 2 ord. pairs.*

5.	Line ℓ contains	points (–6, 1) an	nd (9, –4). Point P	has coordinates	(4, 1).

Line ℓ contains points (4, 18) and (-2, 9). Point P has coordinates (-9, 5).	

KeyConcept Distance Between Parallel Lines

The distance between two parallel lines is the perpendicular distance between one of the lines and any point on the other line.

Is the y-intercept a point on the line? Can we know what it is from the equation?

Example 3 Distance Between Parallel Lines

Find the distance between the parallel lines ℓ and m with equations y = 2x + 1 and y = 2x - 3, respectively.

- 1. Pick one line, call it m
- 2. Write the equation of line p perp to m*
- 3. Find the point of intersection of I and p* (Now you know 2 points)
- 4. Use pyth theorem to find distance*

* Covered in Algebra 1 (separately...now all in same problem!) You need a plan!

GuidedPractice

3A. Find the distance between the parallel lines r and s whose equations are y = -3x - 5 and y = -3x + 6, respectively.

Theorem3.9 Two Lines Equidistant from a Third

In a plane, if two lines are each equidistant from a third line, then the two lines are parallel to each other.

