Geometry 3.2
Use theorems to determine the relationships between specific pairs of angles
Use algebra to find angle measurements

transversal
interior angles
exterior angles
corresponding angles
parallel
perpendicular
activity: tracing paper

(pencil will work best for this activity))
One one of the pieces:	
1. Trace the two sides of your ruler to	form two parallel lines
2. Use a straight edge to draw a transv	versal. (draw the transversal
so it is <mark>not</mark> perpendicular)	/
3. Number the angles 1-8 as shown	
On the other piece of tracing paper:	
	·

Each person will need two pieces of tracing paper.

Postulate 3.1 Corresponding Angles Postulate

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

Examples $\angle 1\cong \angle 3$, $\angle 2\cong \angle 4$, $\angle 5\cong \angle 7$, $\angle 6\cong \angle 8$

Not using a protractor to measure... Are the lines parallel? Which angle pairs?

Example 1 Use Corresponding Angles Postulate

In the figure, $m \angle 5 = 72$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

a. ∠4 72

b. ∠2 72° VA w. ∠4 <1 108° LP W. LZ

GuidedPractice

In the figure, suppose that $m \angle 8 = 105$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used.

105° CA 75° LPW 21 105° VA

P.181

Theorems Parallel Lines and Angle Pairs

3.1 Alternate Interior Angles Theorem If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.

Examples $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Examples ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary.

3.3 Alternate Exterior Angles Theorem If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.

Examples $\angle 5\cong \angle 7$ and $\angle 6\cong \angle 8$

You will prove Theorems 3.2 and 3.3 in Exercises 30 and 35, respectively.

CA - post.

Proof Alternate Interior Angle	es Theorem		
Given: $a \parallel b$ t is a transversal of a and b Prove: $\angle 4$ $\angle 5$, $\angle 3 \cong \angle 6$	<i>5.</i>	6 5 2 t	
· a//b	1.given	7 8	
 2 = 24 2 = 25 	2. CA 3. VA	5. <13(3)	s. ca
		5. < 1 = (3) 6. < 1 = 26	6. VA
	V.		
1. <42 <5	lours	7.43216	r subs

Angle chase: handout

In the figure at the right, $r \parallel s$, $m \angle 2 = 40^{\circ}$, and $m \angle 4 = 60^{\circ}$. Find the indicated measures.

6. m∠1 _____ 7. m∠3 ____

8. m/5 ______ 9. m/6 _____

10. m∠7 _____ 11. m∠8 ____

12. m∠9 _____ 13. m∠10 ____

14. m∠11 _____ 15. m∠12 ____

16. m∠13 _____ 17. m∠14 ____

COMMUNITY PLANNING Redding Lane and Creek Road are parallel streets that intersect Park Road along the west side of Wendell Park. If $m \angle 1 = 118$, find $m \angle 2$.

What is the angle relationship???? (decide that first!)

Example 3 Find Values of Variables

ALGEBRA Use the figure at the right to find the indicated variable. Explain your reasoning.

a. If $m \angle 4 = 2x - 17$ and $m \angle 1 = 85$, find x.

b. Find y if $m \angle 3 = 4y + 30$ and $m \angle 7 = 7y + 6$.

3A. If $m \angle 2 = 4x + 7$ and $m \angle 7 = 5x - 13$, find x.

3B. Find y if $m \angle 5 = 68$ and $m \angle 3 = 3y - 2$.

Theorem 3.4 Perpendicular Transversal Theorem

In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Examples If line $a \parallel \text{line } b$ and line $a \perp \text{line } t$, then line $b \perp \text{line } t$.

