Geometry 5.1
Identify and use perpendicular bisectors in triangles
Identify and use angle bisectors in triangles

perpendicular 190° bisector 2 parts

concurrent lines point of concurrency circumcenter incenter

activity: paper folding

MPQ P.323

ABC p. 323

Construct an angle bisector of a triangle.

Step 1

Draw, label, and cut out $\triangle ABC$.

Step 2

Fold the triangle in half through vertex A, such that sides \overline{AC} and \overline{AB} are aligned.

Step 3

Label point L at the crease along edge \overline{BC} . Use a straightedge to draw \overline{AL} along the fold. AL is an angle bisector of $\triangle ABC$.

Model and Analyze

 Construct the perpendicular bisectors and angle bisectors of the other two sides and angles of △MPQ. What do you notice about their intersections?

Perpendicular Bisectors In Lesson 1-3, you learned that a segment bisector is any segment, line, or plane that intersects a segment at its midpoint. If a bisector is also perpendicular to the segment, it is called a **perpendicular bisector**.

 \overrightarrow{PQ} is a bisector of \overrightarrow{AB} .

 \overrightarrow{RS} is a perpendicular bisector of \overrightarrow{JK} .

5.2 Converse of the Perpendicular Bisector Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Example: If AE = BE, then E lies on \overline{CD} , the \bot bisector of \overline{AB} .

POC:

POC:
Angle bisectors (incenter)
Center of inscribed circle Equidistant from sides

P. O. C. (perp)

Perp bisectors (circumcenter) Center of circumscribed circle Equidistant from vertices

