Geometry 13.6

and

Find probability of events that are mutually exclusive Find probability of events that are not mutually exclusive (inclusive)

Find probabilities of complements

PA+ PR

mutually exclusive (one or the other)

 I inclusive (can it be both?) NM ₽ complement (of an event)

PA T PR = 100% PA = 160-PR

Conditional prob: addl. info given sum is even-

Indicates an intersection of two sample spaces.

ANBANB

Indicates a union of two sample spaces.

AVB AVB

P3
$$\frac{1}{6}$$
P4 $\frac{1}{6}$
P(3 or 4) $\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$

mutually exclusive

If two events A and B are mutually exclusive, then the probability that A or B occurs is Words

the sum of the probabilities of each individual event.

Example

If two events A or B are mutually exclusive, then P(A or B) = P(A) + P(B). + P(C) + P(D)

This rule can be extended to any number of events.

Can it be both?

$$\frac{4}{6}$$
 $\frac{3}{6}$ $\frac{2}{6}$ $\frac{5}{6}$

not mutually exclusive (inclusive)

nmt î

Can it be both? So you counted something twice...

Can it be both?

GuidedPractice

3. What is the probability of drawing a king or a diamond from a standard deck of 52 cards?

$$P_{K} + P_{0}$$

$$\frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$

KeyConcept Probability of the Complement of an Event

The probability that an event will not occur is equal to 1 minus the probability that Words

the event will occur.

Symbols For an event A, P(not A) = 1 - P(A).

30% chance of rain

GuidedPractice 4. If the chance of rain is 70%, what is the probability that it will not rain?

	ConceptSummary Probability Rules		
	Types of Events	Words	Probability Rule
(Independent Events	The outcome of a first event <i>does not</i> affect the outcome of the second event.	If two events A and B are independent, then $P(A \text{ and } B) = P(A) \cdot P(B)$.
(Dependent Events	The outcome of a first event <i>does affect</i> the outcome of the other event.	If two events A and B are dependent, then $P(A \text{ and } B) = P(A) \cdot P(B A)$.
+	Conditional	Additional information is known about the probability of an event.	The conditional probability of A given B is $P(A B) = \frac{P(A \text{ and } B)}{P(B)}$.
(Mutually Exclusive Events	Events <i>do not share</i> common outcomes.	If two events A or B are mutually exclusive then $P(A \text{ or } B) = P(A) + P(B)$.
	Not Mutually Exclusive Events	Events do share common outcomes.	If two events A and B are not mutually exclusive, then $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$.
	Complementary Events	The outcomes of one event consist of all the outcomes in the sample space that are not outcomes of the other event.	For an event A , $P(\text{not }A) = 1 - P(A)$.

0.959

Reduced sample space

Can it be both? no

Can it be both? yes

100%-P

Conditional probability:
Reduced sample space (we already know...)

 \rightarrow P(10 given that the sum is even)

79 HS students

Fr. 8 girls 11 boys = / 9

So. 12 girls 15 boys = 27

Jr. 9 girls 6 boys = 15

Sen. 10 girls 8 boys = 18

Draw one name

P(soph) $\frac{27}{79} \approx 34\%$

P(soph given that it is a girl)

WB 13.6 Sk+pr.