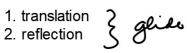
Geometry 9.4

Draw glide reflections and other isometries

Draw compositions of reflections in parallel and intersecting lines parallel

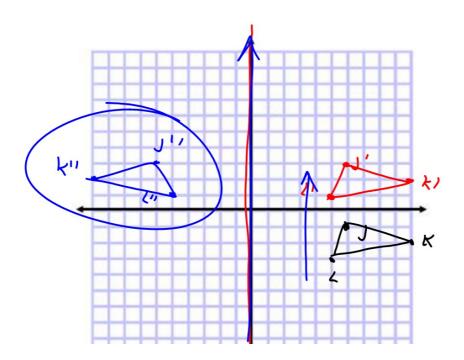
perpendicular 90° (Slupe)(Slupe) = -1 opp/recip composition

glide

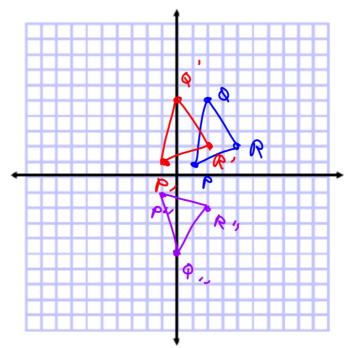

isometry (rigid transformation) ~ Quiz 9.3

whiteboards

1 2


1. translation + 2. reflection (parallel to translation vector)

Example 1 Graph a Glide Reflection

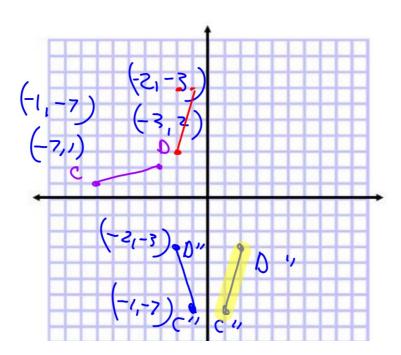


Triangle JKL has vertices J(6, -1), K(10, -2), and L(5, -3). Graph $\triangle JKL$ and its image after a translation along (0, 4) and a reflection in the y-axis.

Triangle PQR has vertices P(1, 1), Q(2, 5), and R(4, 2). Graph $\triangle PQR$ and its image after the indicated glide reflection.

1A. Translation: along $\langle -2, 0 \rangle$ **2** Reflection: in *x*-axis

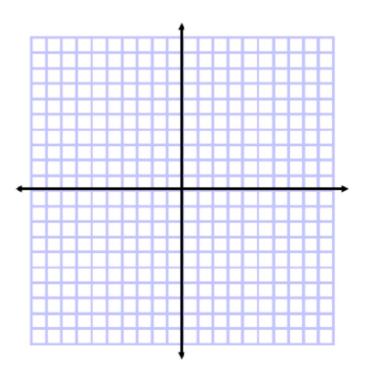
Theorem 9.1 Composition of Isometries


The composition of two (or more) isometries is an isometry.

in order listed (might make a difference)

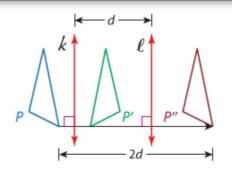
Example 2 Graph Other Compositions of Isometries

The endpoints of \overline{CD} are C(-7, 1) and D(-3, 2). Graph \overline{CD} and its image after a reflection in the *x*-axis and a rotation 90° about the origin.


$$(x,y) \rightarrow (-y,x)$$

9.4 7-270 17 19

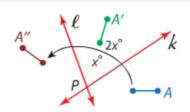
Triangle *ABC* has vertices A(-6, -2), B(-5, -5), and C(-2, -1). Graph $\triangle ABC$ and its image after the composition of transformations in the order listed.


2A. Translation: along $\langle 3, -1 \rangle$ Reflection: in *y*-axis

Theorem 9.2 Reflections in Parallel Lines

The composition of two reflections in parallel lines can be described by a translation vector that is

- perpendicular to the two lines, and
- twice the distance between the two lines.


2x distance

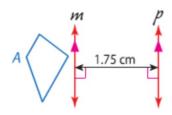
letters

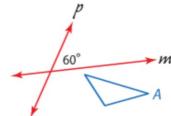
Theorem 9.3 Reflections in Intersecting Lines

The composition of two reflections in intersecting lines can be described by a rotation

- · about the point where the lines intersect and
- through an angle that is twice the measure of the acute or right angle formed by the lines.

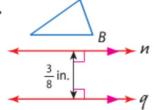
2x angle


letters

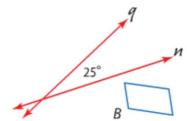

Example 3 Reflect a Figure in Two Lines

Copy and reflect figure A in line m and then line p. Then describe a single transformation that maps A onto A''.

a.



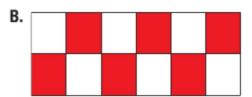
b.



Copy and reflect figure B in line n and then line q. Then describe a single transformation that maps B onto B''.

3A.

3B.



Combination

4. CARPET PATTERNS Describe the transformations that are combined to create each carpet pattern shown.

ConceptSummary Compositions of Translations		
Glide Reflection	Translation	Rotation
the composition of a reflection and a translation	the composition of two reflections in parallel lines	the composition of two reflections in intersecting lines