```
Geometry 7.6
Identify similarity transformations
Verify similarity after a transformation
```

```
SAS -
SSS -
preimage - before
image - after
dilation - change in size
similarity transformation
*center of dilation
SF scale factor
enlargement
reduction

SAS -
SSS -
preimage - before
image - before
size
size
similarity transformation
*center of dilation
SF call SF > 1
reduction

SF > 1
```

Quiz 7.3-7.4

 $\triangle JKL$ is a dilation of $\triangle ABC$.

Center of dilation: (0, 0)

Scale factor: $\frac{JK}{AB}$

What if k = 1?

From A to B E or R? SF=?

COLLECTING Refer to the beginning of the lesson.

By what percent should Adriana enlarge the ticket stub so that the dimensions of its image are 3 times that of her original? What will be the dimensions of the enlarged image?

(preimage)(SF)=image

5.3=15 6.4.3=19-2 15×19.2

2. If the resulting ticket stub image was 1.5 centimeters wide by about 1.9 centimeters long instead, what percent did Adriana mistakenly use to dilate the original image? Explain your reasoning.

Example 3 Verify Similarity after a Dilation

Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation.

a. original: A(-6, -3), B(3, 3), C(3, -3); image: X(-4, -2), Y(2, 2), Z(2, -2)

Informally: Does it look like

the same shape? Formally: Are all corresponding sides

proportional?

SSS

XSAS

StudyTip

Center of Dilation

Unless otherwise stated, all dilations on the coordinate plane use the origin as their center of dilation.

b. original: J(-6, 4), K(6, 8), L(8, 2), M(-4, -2); image: P(-3, 2), Q(3, 4), R(4, 1), S(-2, -1)

3A. original: *A*(2, 3), *B*(0, 1), *C*(3, 0) image: *D*(4, 6), *F*(0, 2), *G*(6, 0)

3B. original: *H*(0, 0), *J*(6, 0), *K*(6, 4), *L*(0, 4) image: *W*(0, 0), *X*(3, 0), *Y*(3, 2), *Z*(0, 2)

