Geometry 7.4
Use proportional parts within triangles
Use proportional parts with parallel lines

triangle midsegment trapezoid midsegment parallel transversal midsegment proportion

Theorem 7.5 Triangle Proportionality Theorem

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Example If $\overline{BE} \parallel \overline{CD}$, then $\frac{AB}{BC} = \frac{AE}{ED}$.

 $\frac{1}{4}$ = $\frac{1}{8}$

FE

In $\triangle PQR$, $\overline{ST} \parallel \overline{RQ}$ If PT = 7.5, TQ = 3, and SR = 2.5, find \overline{PS} .

 $\frac{x}{2.5} = \frac{7.5}{3}$ 3x = 18.75 x = 6.25

Theorem 7.6 Converse of Triangle Proportionality Theorem

If a line intersects two sides of a triangle and separates the sides into proportional corresponding segments, then the line is parallel to the third side of the triangle.

Example If $\frac{AE}{EB} = \frac{CD}{DB}$, then $\overline{AC} \parallel \overline{ED}$.

Example 2 Determine if Lines are Parallel

In $\triangle DEF$, EH = 3, HF = 9, and \overline{DG} is one-third the length of \overline{GF} is $\overline{DE} \parallel \overline{GH}$?

$$\frac{1}{3} \times \frac{3}{2} \times \frac{3}{4} \times \frac{3}$$

(Lesson 6-6)

$$\overline{EF} \parallel \overline{AB} \parallel \overline{DC}$$

 $EF = \frac{1}{2}(AB + DC)$

StudyTip

Midsegment Triangle

The three midsegments of a triangle form the midsegment triangle.

A midsegment of a triangle is a segment with endpoints that are the midpoints of two sides of the triangle. Every triangle has three midsegments. The midsegments of $\triangle ABC$ are \overline{RP} , \overline{PQ} , \overline{RQ} .

A special case of the Triangle Proportionality Theorem is the Triangle Midsegment Theorem.

Theorem 7.7 Triangle Midsegment Theorem

A midsegment of a triangle is parallel to one side of the triangle, and its length is one half the length of that side.

Example If J and K are midpoints of \overline{FH} and \overline{HG} , respectively, then $\overline{JK} \parallel \overline{FG}$ and $JK = \frac{1}{2}FG$.

You will prove Theorem 7.7 in Exercise 32.

Example 3 Use the Triangle Midsegment Theorem

In the figure, \overline{XY} and \overline{XZ} are midsegments of $\triangle RST$. Find each measure.

b.
$$ST = 14$$

c. *m∠RYX* /24

GuidedPractice

Find each measure.

3A. DE 7,5

3B. DB 9, 2 3C. m∠FED 82

extend the transversals...

Corollary 7.1 Proportional Parts of Parallel Lines

If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.

Example If $\overline{AE} \parallel \overline{BF} \parallel \overline{CG}$, then $\frac{AB}{BC} = \frac{EF}{FG}$.

Theorem 7.7 Triangle Midsegment Theorem

A midsegment of a triangle is parallel to one side of the triangle, and its length is one half the length of that side.

Example If J and K are midpoints of \overline{FH} and \overline{HG} ,

respectively, then $\overline{JK} \parallel \overline{FG}$ and $JK = \frac{1}{2}FG$.

You will prove Theorem 7.7 in Exercise 32.

GuidedPractice

5Δ

5B

$$\frac{3\times-5}{2\times+1}=\frac{1}{1}$$

7.4